scispace - formally typeset

Topic

Photodiode

About: Photodiode is a(n) research topic. Over the lifetime, 28653 publication(s) have been published within this topic receiving 329841 citation(s).


Papers
More filters
01 Jan 1981

2,150 citations

Journal ArticleDOI
06 May 2011-Science
TL;DR: An active optical antenna-diode combines the functions of light-harvesting and excited-electron injection, and is a highly compact, wavelength-resonant, and polarization-specific light detector, with a spectral response extending to energies well below the semiconductor band edge.
Abstract: Nanoantennas are key optical components for light harvesting; photodiodes convert light into a current of electrons for photodetection. We show that these two distinct, independent functions can be combined into the same structure. Photons coupled into a metallic nanoantenna excite resonant plasmons, which decay into energetic, "hot" electrons injected over a potential barrier at the nanoantenna-semiconductor interface, resulting in a photocurrent. This dual-function structure is a highly compact, wavelength-resonant, and polarization-specific light detector, with a spectral response extending to energies well below the semiconductor band edge.

1,634 citations

Journal ArticleDOI
TL;DR: A p-n junction diode based on an electrostatically doped tungsten diselenide (WSe2) monolayer is reported, which is presented as a photovoltaic solar cell, a photodiode and a light-emitting diode, and obtained light-power conversion and electroluminescence efficiencies of 0.5% and 0.1%, respectively.
Abstract: The limitations of the bulk semiconductors currently used in electronic devices-rigidity, heavy weight and high costs--have recently shifted the research efforts to two-dimensional atomic crystals such as graphene and atomically thin transition-metal dichalcogenides. These materials have the potential to be produced at low cost and in large areas, while maintaining high material quality. These properties, as well as their flexibility, make two-dimensional atomic crystals attractive for applications such as solar cells or display panels. The basic building blocks of optoelectronic devices are p-n junction diodes, but they have not yet been demonstrated in a two-dimensional material. Here, we report a p-n junction diode based on an electrostatically doped tungsten diselenide (WSe2) monolayer. We present applications as a photovoltaic solar cell, a photodiode and a light-emitting diode, and obtain light-power conversion and electroluminescence efficiencies of ∼ 0.5% and ∼ 0.1%, respectively. Given recent advances in the large-scale production of two-dimensional crystals, we expect them to profoundly impact future developments in solar, lighting and display technologies.

1,090 citations

Journal ArticleDOI
Abstract: At present efforts in infrared detector research are directed towards improving the performance of single element devices, large electronically scanned arrays and higher operating temperature. Another important aim is to make IR detectors cheaper and more convenient to use. All these aspects are discussed in this paper. Investigations of the performance of infrared thermal detectors as compared to photon detectors are presented. Due to fundamental different types of noise, these two classes of detectors have different dependencies of detectivities on wavelength and temperature. Next, an overview of focal plane array architecture is given with emphasise on monolithic and hybrid structures. The objective of the next sections is to present the status of different types of detectors: HgCdTe photodiodes, Schottky-barrier photoemissive devices, silicon and germanium detectors, InSb photodiodes, alternative to HgCdTe III–V and II–VI ternary alloy detectors, monolithic lead chalcogenide photodiodes, quantum well and quantum dot infrared photodetectors. Final part of the paper is devoted to uncooled two-dimensional arrays of thermal detectors. Three most important detection mechanisms, namely, resistive bolometer, pyroelectric detectors and termopile are considered. The development of outstanding technical achievements in uncooled thermal imaging is also presented.

974 citations

Journal ArticleDOI
Abstract: The characterization of rectifying heterojunctions (diodes) fabricated from a semiconducting polymer, a soluble derivative of poly(phenylene‐vinylene), and buckminsterfullerene, C60, are reported. Rectification ratios in the current versus voltage characteristics exceed 104. When illuminated, the devices exhibit a large photoresponse as a result of photoinduced electron transfer across the heterojunction interface from the semiconducting polymer (donor) onto C60 (acceptor). The photodiode and photovoltaic responses are characterized. Photoinduced electron transfer across the donor‐accepted rectifying heterojunction offers potential for photodetector and for solar cell applications.

866 citations


Network Information
Related Topics (5)
Silicon

196K papers, 3M citations

90% related
Optical fiber

167K papers, 1.8M citations

90% related
Thin film

275.5K papers, 4.5M citations

87% related
Dielectric

169.7K papers, 2.7M citations

86% related
Photoluminescence

83.4K papers, 1.8M citations

85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202217
2021496
2020762
2019908
2018930
2017812