scispace - formally typeset
Search or ask a question
Topic

Photoemission spectroscopy

About: Photoemission spectroscopy is a research topic. Over the lifetime, 10821 publications have been published within this topic receiving 250888 citations. The topic is also known as: photoelectron spectroscopy & PES.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the electronic effects of a wide variety of peripheral substituents in free base prophyrins have been evaluated using X-ray photoelectron spectroscopy (XPS) and all-electron ab initio calculations.
Abstract: The electronic effects of a wide variety of peripheral substituents in free base prophyrins have been evaluated using X-ray photoelectron spectroscopy (XPS) and all-electron ab initio calculations. Both methods have identified the 1s energies of the central nitrogens as excellent sensors of the electronic effects of peripheral substituents. Core level photoelectron spectra are reported fornine porphyrins, including unsubtituted prophyrin, octaethylporphyrin, and seven tetraphenylporphyrins

117 citations

Journal ArticleDOI
TL;DR: In situ thickness-dependent photoemission spectroscopy (PES) has been performed on SrRuO3 (SRO) layers deposited on SrTiO3 substrates to study the structure-induced evolution of the electronic structure as mentioned in this paper.
Abstract: In situ thickness-dependent photoemission spectroscopy (PES) has been performed on SrRuO3 (SRO) layers deposited on SrTiO3 substrates to study the structure-induced evolution of the electronic structure. The PES spectra showing the existence of two critical film thicknesses reveal that a metal-insulator transition occurs at a film thickness of 4–5 monolayers (ML) and the evolution of Ru 4d-derived states around the Fermi level (EF) saturates at about 15 ML. The observed spectral behavior well matches the electric and magnetic properties and thickness-dependent evolution of surface morphology of the ultrathin SRO films. These experimental results suggest the importance of the disorder associated with the unique growth-mode transition in SRO films.

117 citations

Journal ArticleDOI
TL;DR: In this article, nitrogen doped reduced graphene oxide (N-RGO) monoliths have been synthesized using graphene oxide and melamine through an ice-templated assembly.

117 citations

Journal ArticleDOI
TL;DR: The chemistry of the (NH4)2Sx−treated n−GaAs (100) surfaces has been studied using synchrotron radiation photoemission spectroscopy as discussed by the authors.
Abstract: The chemistry of the (NH4)2Sx‐treated n‐GaAs (100) surfaces has been studied using synchrotron radiation photoemission spectroscopy Ga 3d, As 3d, and S 2p photoemission spectra are measured before and after annealing in vacuum with a photon energy of about 210 eV, where S 2p core level spectra can be sensitively detected It is found that Ga‐S, As‐S, and S‐S bonds are formed on the as‐treated GaAs surfaces, and that stable Ga‐S bonds become dominant after annealing at 360 °C for 10 min in vacuum The thickness of the surface sulfide layer is reduced from about 05 to 03 nm by annealing The surface Fermi‐ level position of the as‐treated surfaces is determined to be about 08 eV below the conduction band minimum, which is about 01 eV closer to the valence band maximum than that of the untreated surfaces A Fermi‐level shift of 03 eV toward a flat band condition is also observed after annealing It is found that the Ga‐S bonding plays an important role in passivating GaAs surfaces

117 citations

Reference EntryDOI
15 Jan 2002
TL;DR: In this article, the authors present a survey of the state-of-the-art techniques for X-ray image and spectrum analysis in the field of electron detection and analysis.
Abstract: The article contains sections titled: 1. Introduction 2. Electron Detection 2.1. X-Ray Photoelectron Spectroscopy (XPS) 2.1.1. Principles 2.1.2. Instrumentation 2.1.2.1. Vacuum Requirements 2.1.2.2. X-Ray Sources 2.1.2.3. Synchrotron Radiation 2.1.2.4. Electron Energy Analyzers 2.1.2.5. Spatial Resolution 2.1.3. Spectral Information and Chemical Shifts 2.1.4. Quantification, Depth Profiling, and Imaging 2.1.4.1. Quantification 2.1.4.2. Depth Profiling 2.1.4.3. Imaging 2.1.5. The Auger Parameter 2.1.6. Applications 2.1.6.1. Catalysis 2.1.6.2. Polymers 2.1.6.3. Corrosion and Passivation 2.1.6.4. Adhesion 2.1.6.5. Superconductors 2.1.6.6. Interfaces 2.2. Ultraviolet Photoelectron Spectroscopy (UPS) 2.3. Auger Electron Spectroscopy (AES) 2.3.1. Principles 2.3.2. Instrumentation 2.3.2.1. Vacuum Requirements 2.3.2.2. Electron Sources 2.3.2.3. Electron Energy Analyzers 2.3.3. Spectral Information 2.3.4. Quantification and Depth Profiling 2.3.4.1. Quantification 2.3.4.2. Depth Profiling 2.3.5. Applications 2.3.5.1. Grain Boundary Segregation 2.3.5.2. Semiconductor Technology 2.3.5.3. Thin Films and Interfaces 2.3.5.4. Surface Segregation 2.4. Scanning Auger Microscopy (SAM) 2.5. Other Electron-Detecting Techniques 2.5.1. Auger Electron Appearance Potential Spectroscopy (AEAPS) 2.5.2. Electron Energy Loss Methods 2.5.2.1. Electron Energy Loss Spectroscopy (EELS) and Core-Electron Energy Loss Spectroscopy (CEELS) 2.5.2.2. High-Resolution Electron Energy Loss Spectroscopy (HREELS) 2.5.3. Diffraction Methods 2.5.3.1. Low-Energy Electron Diffraction (LEED) 2.5.3.2. Reflection High-Energy Electron Diffraction (RHEED) 2.5.4. Ion-Excitation Method 2.5.4.1. Ion (Excited) Auger Electron Spectroscopy (IAES) 2.5.4.2. Ion-Neutralization Spectroscopy (INS) 2.5.4.3. Metastable Quenching Spectroscopy (MQS) 2.5.5. Inelastic Electron Tunneling Spectroscopy (IETS) 3. Ion Detection 3.1. Secondary Ion Mass Spectrometry 3.1.1. Static Secondary Ion Mass Spectrometry (SSIMS) 3.1.1.1. Principles 3.1.1.2. Instrumentation 3.1.1.2.1. Ion Sources 3.1.1.2.2. Mass Analyzers 3.1.1.3. Quantification 3.1.1.4. Spectral Information 3.1.1.5. Applications 3.1.1.5.1. Oxide Films 3.1.1.5.2. Interfaces 3.1.1.5.3. Polymers 3.1.1.5.4. Biosensors 3.1.1.5.5. Surface Reactions 3.1.1.5.6. Imaging 3.1.1.5.7. Ultrashallow Depth Profiling 3.1.2. Dynamic SIMS 3.1.2.1. Principles 3.1.2.2. Instrumentation 3.1.2.2.1. Ion Sources 3.1.2.2.2. Mass Analyzers 3.1.2.2.3. Detectors 3.1.2.3. Spectral Information 3.1.2.4. Quantification 3.1.2.5. Mass Spectra 3.1.2.6. Depth Profiles 3.1.2.7. Imaging 3.1.2.8. Applications 3.1.2.8.1. Implantation Profiles 3.1.2.8.2. Layer Analysis 3.1.2.8.3. 3D Bulk Element Distribution 3.2. Secondary Neutral Mass Spectrometry (SNMS) 3.2.1. General Principles 3.2.2. Electron-Beam and HF-Plasma SNMS 3.2.2.1. Principles 3.2.2.2. Instrumentation 3.2.2.3. Spectral Information 3.2.2.4. Quantification 3.2.2.5. Element Depth Profiling 3.2.2.6. Applications 3.2.3. Laser-SNMS 3.2.3.1. Principles 3.2.3.1.1. Nonresonant Laser-SNMS 3.2.3.1.2. Resonant Laser-SNMS 3.2.3.1.3. Experimental Setup 3.2.3.1.4. Ionization Schemes 3.2.3.2. Instrumentation 3.2.3.3. Spectral Information 3.2.3.4. Quantification 3.2.3.5. Applications 3.2.3.5.1. Nonresonant Laser-SNMS 3.2.3.5.2. Resonant Laser-SNMS 3.3. Ion-Scattering Techniques 3.3.1. Rutherford Backscattering Spectroscopy (RBS) 3.3.1.1. Principles 3.3.1.2. Instrumentation 3.3.1.3. Spectral Information 3.3.1.4. Quantification 3.3.1.5. Applications 3.3.2. Low-Energy Ion Scattering (LEIS) 3.3.2.1. Principles 3.3.2.2. Instrumentation 3.3.2.3. Information 3.3.2.4. Quantification 3.3.2.5. Applications 3.4. Other Ion-Detecting Techniques 3.4.1. Desorption Methods 3.4.1.1. Electron-Stimulated Desorption (ESD) and Electron-Stimulated Desorption Ion Angular Distribution (ESDIAD) 3.4.1.2. Thermal Desorption Spectroscopy (TDS) 3.4.2. Glow Discharge Mass Spectroscopy (GDMS) 3.4.3. Fast Atom Bombardment Mass Spectroscopy (FABMS) 3.4.4. Atom Probe Microscopy 3.4.4.1. Atom Probe Field-Ion Microscopy (APFIM) 3.4.4.2. Position-Sensitive Atom Probe (POSAP) 4. Photon Detection 4.1. Total-Reflection X-ray Fluorescence Analysis (TXRF) 4.1.1. Principles 4.1.2. Instrumentation 4.1.3. Spectral Information 4.1.4. Quantification 4.1.5. Applications 4.1.5.1. Particulate and Film-Type Surface Contamination 4.1.5.2. Semiconductors 4.1.5.2.1. Depth Profiling by TXRF and Multilayer Structures 4.1.5.2.2. Vapor Phase Decomposition (VPD) and Droplet Collection 4.2. Glow Discharge Optical Emission Spectroscopy (GD-OES) 4.2.1. Principles 4.2.2. Instrumentation 4.2.3. Spectral Information 4.2.4. Quantification 4.2.5. Depth Profiling 4.2.6. Applications 4.3. Surface-Sensitive IR and Raman Spectroscopy; Ellipsometry 4.3.1. Reflection - Absorption IR Spectroscopy (RAIRS) 4.3.1.1. Principles 4.3.1.2. Instrumentation and Applications 4.3.2. Surface Raman Spectroscopy 4.3.2.1. Principles 4.3.2.2. Surface-Enhanced Raman Scattering (SERS) 4.3.2.2.1. Instrumentation 4.3.2.2.2. Spectral Information 4.3.2.2.3. Applications 4.3.2.3. Nonlinear Optical Spectroscopy 4.3.3. UV - VIS - IR Ellipsometry (ELL) 4.3.3.1. Principles 4.3.3.2. Instrumentation 4.3.3.3. Applications 4.4. Other Photon-Detecting Techniques 4.4.1. Appearance-Potential Methods 4.4.1.1. Soft X-Ray Appearance-Potential Spectroscopy (SXAPS) 4.4.1.2. Disappearance-Potential Spectroscopy (DAPS) 4.4.2. Inverse Photoemission Spectroscopy (IPES) and Bremsstrahlung Isochromat Spectroscopy (BIS) 4.4.3. Ion-Beam Spectrochemical Analysis (IBSCA) 5. Scanning Probe Microscopy 5.1. Atomic Force Microscopy (AFM) 5.1.1. Principles 5.1.2. Instrumentation 5.1.3. Applications 5.2. Scanning Tunneling Microscopy (STM) 5.2.1. Principles 5.2.2. Instrumentation 5.2.3. Lateral and Spectroscopic Information 5.2.4. Applications 6. Summary and Comparison of Techniques 7. Surface Analytical Equipment Suppliers 8. Acknowledgement

117 citations


Network Information
Related Topics (5)
Band gap
86.8K papers, 2.2M citations
92% related
Thin film
275.5K papers, 4.5M citations
90% related
Raman spectroscopy
122.6K papers, 2.8M citations
89% related
Amorphous solid
117K papers, 2.2M citations
88% related
Silicon
196K papers, 3M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023128
2022262
2021227
2020281
2019247
2018263