scispace - formally typeset
Search or ask a question
Topic

Photoexcitation

About: Photoexcitation is a research topic. Over the lifetime, 5874 publications have been published within this topic receiving 134733 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the absorption, photoexcitation and internal and external luminescence efficiencies for Alq3 films grown by vacuum deposition have been measured accurately for the first time, and the internal quantum efficiency was found to be (32 ± 2)% independent of film thickness from 100 A to 1.35 μm.

219 citations

Journal ArticleDOI
TL;DR: Steady-state absorption and fluorescence characteristics of curcumin have been found to be sensitive to the solvent characteristics and the nuclear magnetic resonance study in CDCl3 and dimethyl sulfoxide-D6 supports the fact that the enol form is present in the solution by more than about 95% in these solvents.
Abstract: Photophysical properties of curcumin, 1,7-bis-(4-hydroxy-3-methoxy phenyl)-1,6-heptadiene-2,5-dione, a pigment found in the rhizomes of Curcuma longa (turmeric) have been studied in different kinds of organic solvent and also in Triton X-100 aqueous micellar media using time-resolved fluorescence and transient absorption techniques having pico and nanosecond time resolution, in addition to steady-state absorption and fluorescence spectroscopic techniques. Steady-state absorption and fluorescence characteristics of curcumin have been found to be sensitive to the solvent characteristics. Large change (delta mu = 6.1 Debye) in dipole moments due to photoexcitation to the excited singlet state (S1) indicates strong intramolecular charge transfer character of the latter. Curcumin is a weakly fluorescent molecule and the fluorescence decay properties in most of the solvents could be fitted well to a double-exponential decay function. The shorter component having lifetime in the range 50-350 ps and percent contribution of amplitude more than 90% in different solvents may be assigned to the enol form, whereas the longer component, having lifetime in the range 500-1180 ps with less than 10% contribution may be assigned to the di-keto form of curcumin. Our nuclear magnetic resonance study in CDCl3 and dimethyl sulfoxide-D6 also supports the fact that the enol form is present in the solution by more than about 95% in these solvents. Excited singlet (S1) and triplet (T1) absorption spectrum and decay kinetics have been characterized by pico and nanosecond laser flash photolysis. Quantum yield of the triplet is low (phi T < or = 0.12). Both the fluorescence and triplet quantum yields being low (phi f + phi T < 0.18), the photophysics of curcumin is dominated by the energy relaxation mechanism via the internal conversion process.

214 citations

Journal ArticleDOI
TL;DR: Relaxation of a nonequilibrium distribution of electrons and holes in GaAs following femtosecond photoexcitation is investigated via spectrally and time-resolved luminescence, demonstrating carrier-carrier scattering rates higher than predicted by calculations with a statically screened interaction potential.
Abstract: Relaxation of a nonequilibrium distribution of electrons and holes in GaAs following femtosecond photoexcitation is investigated via spectrally and time-resolved luminescence. A rapid onset of luminescence over a broad spectral range shows that both electrons and holes are redistributed over a wide energy range within 100 fs, even at excitation densities as low as ${10}^{17}$ ${\mathrm{cm}}^{\mathrm{\ensuremath{-}}3}$. The data demonstrate carrier-carrier scattering rates higher than predicted by calculations with a statically screened interaction potential. Monte Carlo simulations using dynamical screening account for the experimental results.

214 citations

Journal ArticleDOI
TL;DR: In this article, a framework for understanding impulsively photoinduced vibrational coherent motion on the ground electronic surface was presented, in particular strong resonant excitation to a directly dissociative electronic surface is considered.
Abstract: A framework for understanding impulsively photoinduced vibrational coherent motion on the ground electronic surface is presented. In particular strong resonant excitation to a directly dissociative electronic surface is considered. Three distinct approaches are employed. A two surface Fourier wavepacket method explicitly including the field explores this process in isolated molecules. A coordinate dependent two‐level system is employed to develop a novel analytical approximation to the photoinduced quantum dynamics. The negligible computational requirements make it a powerful interactive tool for reconstructing the impulsive photoexcitation stage. Its analytical nature provides closed form expressions for the photoinduced changes in the material. Finally the full simulation of the process including the solvent effects is carried out by a numerical propagation of the density operator. In all three techniques the excitation field is treated to all orders, allowing an analysis of current experiments using strong fields, resulting in substantial photoconversion. The emerging picture is that the impulsive excitation carves a coherent dynamical ‘‘hole’’ out of the ground surface density. A rigorous definition of the dynamical ‘‘hole’’ is constructed and used to define a measure of its coherence. In particular all photoinduced time dependence in the system can be directly related to the dynamical ‘‘hole.’’ All three techniques are used to simulate the pump probe experiment on the symmetric stretch mode of I3−, including electronic and vibrational dephasing.

213 citations

Journal ArticleDOI
TL;DR: In this article, the generation and decay dynamics of charges and excitons in a model polymer semiconductor (MEH-PPV) in solution and drop-cast thin films, by recording the sub-ps transient complex conductivity using THz time-domain spectroscopy.
Abstract: We compare the generation and decay dynamics of charges and excitons in a model polymer semiconductor (MEH-PPV) in solution and drop-cast thin films, by recording the sub-ps transient complex conductivity using THz time-domain spectroscopy. The results show that the quantum efficiency of charge generation is two orders of magnitude smaller in solution (~10–5) than in the solid film (~10–3). The proximity of neighboring chains in the films apparently facilitates (hot) exciton dissociation, presumably by allowing the electron and hole to separate on different polymer strands. For both samples, photoexcitation leads to the predominant formation of bound charge pairs (excitons) that can be detected through their polarizability. Surprisingly, the polarizability per absorbed photon is a factor of 3 larger in solution than in the film, suggesting that interchain interactions in the film do not result in a substantial delocalization of the exciton wave function.

212 citations


Network Information
Related Topics (5)
Raman spectroscopy
122.6K papers, 2.8M citations
92% related
Band gap
86.8K papers, 2.2M citations
91% related
Amorphous solid
117K papers, 2.2M citations
87% related
Graphene
144.5K papers, 4.9M citations
86% related
Thin film
275.5K papers, 4.5M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023249
2022529
2021221
2020204
2019183
2018256