scispace - formally typeset
Search or ask a question
Topic

Photoexcitation

About: Photoexcitation is a research topic. Over the lifetime, 5874 publications have been published within this topic receiving 134733 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the femtosecond transient absorption spectroscopy was used to study the ultrafast dynamics of chlorine dioxide (OClO) photochemistry in aqueous solution.
Abstract: The ultrafast dynamics of chlorine dioxide (OClO) photochemistry in aqueous solution was studied by femtosecond transient absorption spectroscopy. Following the photoexcitation of OClO at 395 nm, the transient absorption dynamics were probed at 12 different wavelengths ranging from 350 to 700 nm. The transient absorption features observed in the visible wavelengths are assigned to correspond to the vibrationally hot photoisomer ClOO*. The spectral dynamics reveal the vibrational relaxation of this molecule in its ground electronic state. The total vibrational energy relaxation occurs within ∼9 ps. The dynamics of the formation of chlorine atom was examined by measuring the absorption dynamics in the 350−390 nm range. The time constant for Cl formation is calculated to be ∼200 ps. The data show that the dominant pathway for Cl formation is via the isomerized ClOO molecule. No fast component for Cl is detected, indicating that the ClOO molecule reaches thermal equilibrium before dissociating into Cl and O2.

42 citations

Journal ArticleDOI
TL;DR: In this article, the authors used frequency, angle, and time-resolved photoelectron imaging together with electronic structure calculations to characterise the π-stacked coenzyme Q0 dimer radical anion and its exited state dynamics.
Abstract: Isolated π-stacked dimer radical anions present the simplest model of an excess electron in a π-stacked environment. Here, frequency-, angle-, and time-resolved photoelectron imaging together with electronic structure calculations have been used to characterise the π-stacked coenzyme Q0 dimer radical anion and its exited state dynamics. In the ground electronic state, the excess electron is localised on one monomer with a planar para-quinone ring, which is solvated by the second monomer in which carbonyl groups are bent out of the para-quinone ring plane. Through the π-stacking interaction, the dimer anion exhibits a number of charge-transfer (intermolecular) valence-localised resonances situated in the detachment continuum that undergo efficient internal conversion to a cluster dipole-bound state (DBS) on a ∼60 fs timescale. In turn, the DBS undergoes vibration-mediated autodetachment on a 2.0 ± 0.2 ps timescale. Experimental vibrational structure and supporting calculations assign the intermolecular dynamics to be facilitated by vibrational wagging modes of the carbonyl groups on the non-planar monomer. At photon energies ∼0.6–1.0 eV above the detachment threshold, a competition between photoexcitation of an intermolecular resonance leading to the DBS, and photoexcitation of an intramolecular resonance leading to monomer-like dynamics further illustrates the π-stacking specific dynamics. Overall, this study provides the first direct observation of both internal conversion of resonances into a DBS, and characterisation of a vibration-mediated autodetachment in real-time.

42 citations

Journal ArticleDOI
TL;DR: It is found that the T1 state has a mixed nπ*/πππ* character and that theT2(ππ*) state acts as an intermediate state between the S1 and T1 states, in line with recent experiments, which suggested a two-step kinetic model to populate the phosphorescent state after photoexcitation.
Abstract: In benzophenone, intersystem crossing occurs efficiently between the S1(nπ*) state and the T1 state of dominant nπ* character, leading to excited triplet states after photoexcitation. The transition mechanism between S1(nπ*) and T1 is still a matter of debate, despite several experimental studies. Quantum mechanical calculations have been performed in order to assess the relative efficiencies of previously proposed mechanisms, in particular, the direct S1 → T1 and indirect S1 → T2(ππ*) → T1 ones. Multiconfigurational wave function based methods are used to discuss the nature of the relevant states and also to determine minimum energy paths and conical intersections. It is found that the T1 state has a mixed nπ*/ππ* character and that the T2(ππ*) state acts as an intermediate state between the S1 and T1 states. This result is in line with recent experiments, which suggested a two-step kinetic model to populate the phosphorescent state after photoexcitation [Aloise et al., J. Phys. Chem. A, 2008, 112, 224–231].

42 citations

Journal ArticleDOI
TL;DR: It is shown that fitting difference spectra allows an increase in sensitivity, such that slight structural changes can be retrieved, which are not detected in fitting full spectra.
Abstract: A full multiple theor. model (MXAN) is applied to fit picosecond difference x-ray absorption spectra at the Ru L3 edge upon photoexcitation of aq. [RuII(bpy)3]2+. Fitting difference spectra allows an increase in sensitivity, such that slight structural changes can be retrieved, which are not detected in fitting full spectra. The Ru-N bond distances of the excited complex in the 3MLCT state are in good agreement with recently published values. The implementation of the present approach to L-edge spectra and its high sensitivity opens opportunities for its extension to a large class of expts. where difference x-ray absorption spectra are recorded. [on SciFinder (R)]

42 citations

Journal ArticleDOI
TL;DR: The initial stages of the heterogeneous photoreduction of quinone species by self-assembled porphyrin ion pairs at the water|1,2-dichloroethane (DCE) interface have been studied by ultrafast time-resolved spectroscopy and dynamic photoelectrochemical measurements.
Abstract: The initial stages of the heterogeneous photoreduction of quinone species by self-assembled porphyrin ion pairs at the water|1,2-dichloroethane (DCE) interface have been studied by ultrafast time-resolved spectroscopy and dynamic photoelectrochemical measurements. Photoexcitation of the water-soluble ion pair formed by zinc meso-tetrakis(p-sulfonatophenyl)porphyrin (ZnTPPS4-) and zinc meso-tetrakis(N-methylpyridyl)porphyrin (ZnTMPyP4+) leads to a charge-separated state of the form ZnTPPS3-−ZnTMPyP3+ within 40 ps. This charge-separated state is involved in the heterogeneous electron injection to acceptors in the organic phase in the microsecond time scale. The heterogeneous electron transfer manifests itself as photocurrent responses under potentiostatic conditions. In the case of electron acceptors such as 1,4-benzoquinone (BQ), 2,6-dichloro-1,4-benzoquinone (DCBQ), and tetrachloro-1,4-benzoquinone (TCBQ), the photocurrent responses exhibit a strong decay due to back electron transfer to the oxidized porp...

42 citations


Network Information
Related Topics (5)
Raman spectroscopy
122.6K papers, 2.8M citations
92% related
Band gap
86.8K papers, 2.2M citations
91% related
Amorphous solid
117K papers, 2.2M citations
87% related
Graphene
144.5K papers, 4.9M citations
86% related
Thin film
275.5K papers, 4.5M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023249
2022529
2021221
2020204
2019183
2018256