scispace - formally typeset
Search or ask a question

Showing papers on "Photoluminescence published in 2016"


Journal ArticleDOI
TL;DR: In this paper, a room-temperature (RT) synthesis of CsPbX3@X quantum-well band alignment is proposed to guarantee the excitons generation and high-rate radiative recombination at RT.
Abstract: Recently, Kovalenko and co-workers and Li and co-workers developed CsPbX3 (X = Cl, Br, I) inorganic perovskite quantum dots (IPQDs), which exhibited ultrahigh photoluminescence (PL) quantum yields (QYs), low-threshold lasing, and multicolor electroluminescence. However, the usual synthesis needs high temperature, inert gas protection, and localized injection operation, which are severely against applications. Moreover, the so unexpectedly high QYs are very confusing. Here, for the first time, the IPQDs' room-temperature (RT) synthesis, superior PL, underlying origins and potentials in lighting and displays are reported. The synthesis is designed according to supersaturated recrystallization (SR), which is operated at RT, within few seconds, free from inert gas and injection operation. Although formed at RT, IPQDs' PLs have QYs of 80%, 95%, 70%, and FWHMs of 35, 20, and 18 nm for red, green, and blue emissions. As to the origins, the observed 40 meV exciton binding energy, halogen self-passivation effect, and CsPbX3@X quantum-well band alignment are proposed to guarantee the excitons generation and high-rate radiative recombination at RT. Moreover, such superior optical merits endow them with promising potentials in lighting and displays, which are primarily demonstrated by the white light-emitting diodes with tunable color temperature and wide color gamut.

1,932 citations


Journal ArticleDOI
26 Jan 2016-ACS Nano
TL;DR: It is found that ligand binding to the NC surface is highly dynamic, and therefore, ligands are easily lost during the isolation and purification procedures, and when a small amount of both oleic acid and oleylamine is added, the NCs can be purified, maintaining optical, colloidal, and material integrity.
Abstract: Lead halide perovskite materials have attracted significant attention in the context of photovoltaics and other optoelectronic applications, and recently, research efforts have been directed to nanostructured lead halide perovskites. Collodial nanocrystals (NCs) of cesium lead halides (CsPbX3, X = Cl, Br, I) exhibit bright photoluminescence, with emission tunable over the entire visible spectral region. However, previous studies on CsPbX3 NCs did not address key aspects of their chemistry and photophysics such as surface chemistry and quantitative light absorption. Here, we elaborate on the synthesis of CsPbBr3 NCs and their surface chemistry. In addition, the intrinsic absorption coefficient was determined experimentally by combining elemental analysis with accurate optical absorption measurements. 1H solution nuclear magnetic resonance spectroscopy was used to characterize sample purity, elucidate the surface chemistry, and evaluate the influence of purification methods on the surface composition. We fi...

1,267 citations


Journal ArticleDOI
TL;DR: This work investigates the temperature dependence of emission line broadening in the four commonly studied formamidinium and methylammonium perovskites, and discovers that scattering from longitudinal optical phonons via the Fröhlich interaction is the dominant source of electron–phonon coupling near room temperature.
Abstract: Phonon scattering limits charge-carrier mobilities and governs emission line broadening in hybrid metal halide perovskites. Establishing how charge carriers interact with phonons in these materials is therefore essential for the development of high-efficiency perovskite photovoltaics and low-cost lasers. Here we investigate the temperature dependence of emission line broadening in the four commonly studied formamidinium and methylammonium perovskites, HC(NH2)2PbI3, HC(NH2)2PbBr3, CH3NH3PbI3 and CH3NH3PbBr3, and discover that scattering from longitudinal optical phonons via the Frohlich interaction is the dominant source of electron–phonon coupling near room temperature, with scattering off acoustic phonons negligible. We determine energies for the interacting longitudinal optical phonon modes to be 11.5 and 15.3 meV, and Frohlich coupling constants of ∼40 and 60 meV for the lead iodide and bromide perovskites, respectively. Our findings correlate well with first-principles calculations based on many-body perturbation theory, which underlines the suitability of an electronic band-structure picture for describing charge carriers in hybrid perovskites. Phonon scattering limits charge transport in perovskite solar cells, yet the interactions involved are still poorly understood. Here, Wright et al. show by photoluminescence measurements and first-principles calculations that longitudinal optical phonons dominate the electron-phonon coupling at room temperature.

912 citations


Journal ArticleDOI
Shibin Sun1, Dan Yuan1, Yuan Xu1, Aifei Wang1, Zhengtao Deng1 
19 Feb 2016-ACS Nano
TL;DR: This method provides a facile and versatile route to rationally control the shape of the CsPbX3 perovskites nanocrystals, which will create opportunities for applications such as displays, lasing, light-emitting diodes, solar concentrators, and photon detection.
Abstract: Colloidal nanocrystals of fully inorganic cesium lead halide (CsPbX3, X = Cl, Br, I, or combinations thereof) perovskites have attracted much attention for photonic and optoelectronic applications. Herein, we demonstrate a facile room-temperature (e.g., 25 °C), ligand-mediated reprecipitation strategy for systematically manipulating the shape of CsPbX3 colloidal nanocrystals, such as spherical quantum dots, nanocubes, nanorods, and nanoplatelets. The colloidal spherical quantum dots of CsPbX3 were synthesized with photoluminescence (PL) quantum yield values up to >80%, and the corresponding PL emission peaks covering the visible range from 380 to 693 nm. Besides spherical quantum dots, the shape of CsPbX3 nanocrystals could be engineered into nanocubes, one-dimensional nanorods, and two-dimensional few-unit-cell-thick nanoplatelets with well-defined morphology by choosing different organic acid and amine ligands via the reprecipitation process. The shape-dependent PL decay lifetimes have been determined t...

851 citations


Journal ArticleDOI
TL;DR: Extremely efficient sky-blue organic electroluminescence with external quantum efficiency of ≈37% is achieved in a conventional planar device structure using a highly efficient thermally activated delayed fluorescence emitter based on the spiroacridine-triazine hybrid.
Abstract: Extremely efficient sky-blue organic electroluminescence with external quantum efficiency of ≈37% is achieved in a conventional planar device structure, using a highly efficient thermally activated delayed fluorescence emitter based on the spiroacridine-triazine hybrid and simultaneously possessing nearly unitary (100%) photoluminescence quantum yield, excellent thermal stability, and strongly horizontally oriented emitting dipoles (with a horizontal dipole ratio of 83%).

831 citations


PatentDOI
15 Oct 2016-Science
TL;DR: In this paper, an air-stable solution-based chemical treatment by an organic superacid was proposed to improve the photoluminescence and minority carrier lifetime of MoS 2 monolayers by over two orders of magnitude.
Abstract: Two-dimensional (2D) transition-metal dichalcogenides have emerged as a promising material system for optoelectronic applications, but their primary figure-of-merit, the room-temperature photoluminescence quantum yield (QY) is extremely poor. The prototypical 2D material, MoS 2 is reported to have a maximum QY of 0.6% which indicates a considerable defect density. We report on an air-stable solution-based chemical treatment by an organic superacid which uniformly enhances the photoluminescence and minority carrier lifetime of MoS 2 monolayers by over two orders of magnitude. The treatment eliminates defect-mediated non-radiative recombination, thus resulting in a final QY of over 95% with a longest observed lifetime of 10.8±0.6 nanoseconds. Obtaining perfect optoelectronic monolayers opens the door for highly efficient light emitting diodes, lasers, and solar cells based on 2D materials.

767 citations


Journal ArticleDOI
TL;DR: The simple, scalable, single-step, and polar-solvent-free synthesis of high-quality colloidal CsPbX3 (X=Cl, Br, and I) perovskite nanocrystals with tunable halide ion composition and thickness by direct ultrasonication of the corresponding precursor solutions in the presence of organic capping molecules is described.
Abstract: We describe the simple, scalable, single-step, and polar-solvent-free synthesis of high-quality colloidal CsPbX3 (X=Cl, Br, and I) perovskite nanocrystals (NCs) with tunable halide ion composition and thickness by direct ultrasonication of the corresponding precursor solutions in the presence of organic capping molecules. High angle annular dark field scanning transmission electron microscopy (HAADF-STEM) revealed the cubic crystal structure and surface termination of the NCs with atomic resolution. The NCs exhibit high photoluminescence quantum yields, narrow emission line widths, and considerable air stability. Furthermore, we investigated the quantum size effects in CsPbBr3 and CsPbI3 nanoplatelets by tuning their thickness down to only three to six monolayers. The high quality of the prepared NCs (CsPbBr3) was confirmed by amplified spontaneous emission with low thresholds. The versatility of this synthesis approach was demonstrated by synthesizing different perovskite NCs.

551 citations


Journal ArticleDOI
TL;DR: For the first time, triple-mode emission (PL, UCPL, and room temperature phosphorescence (RTP) is reported, which relies on a composite of the luminescent carbon dots (CDs) prepared from m-phenylenediamine and poly(vinyl alcohol) (PVA) and demonstrates promise as a triple- mode emission ink in the field of advanced anti-counterfeiting.
Abstract: Photoluminescence (PL), up-conversion PL (UCPL), and phosphorescence are three kinds of phenomena common to light-emitting materials, but it is very difficult to observe all of them simultaneously when they are derived from a single material at room temperature. For the first time, triple-mode emission (that is, PL, UCPL, and room temperature phosphorescence (RTP)) is reported, which relies on a composite of the luminescent carbon dots (CDs) prepared from m-phenylenediamine and poly(vinyl alcohol) (PVA). Moreover, the CDs-PVA aqueous dispersion is nearly colorless and demonstrates promise as a triple-mode emission ink in the field of advanced anti-counterfeiting.

540 citations


Journal ArticleDOI
TL;DR: Self-quenching in the aggregation state is overcome, and tunable solid-state photoluminescence of carbon-dot powder is achieved, and a novel concept, i.e., constructing dual-fluorescence morphologies from single luminescent species, is presented to realize white-light emission.
Abstract: Self-quenching in the aggregation state is overcome, and tunable solid-state photoluminescence of carbon-dot powder is achieved. Furthermore, based on the controllable optical property in organic solvents, a novel concept, i.e., constructing dual-fluorescence morphologies from single luminescent species, is presented to realize white-light emission.

493 citations


Journal ArticleDOI
TL;DR: The results reveal the strong nonlinear absorption in the emerging CsPbX3 perovskite nanocrystals and suggest these nanocry crystals as attractive multiphoton pumped optical gain media, which would offer new opportunities in nonlinear photonics and revive the nonlinear optical devices.
Abstract: Halide perovskite materials have attracted intense research interest due to the striking performance in photoharvesting photovoltaics as well as photoemitting applications. Very recently, the emerging CsPbX3 (X = Cl, Br, I) perovskite nanocrystals have been demonstrated to be efficient emitters with photoluminescence quantum yield as high as ∼90%, room temperature single photon sources, and favorable lasing materials. Herein, the nonlinear optical properties, in particular, the multiphoton absorption and resultant photoluminescence of the CsPbBr3 nanocrystals, were investigated. Notably, a large two-photon absorption cross-section of up to ∼1.2 × 105 GM is determined for 9 nm sized CsPbBr3 nanocrystals. Moreover, low-threshold frequency-upconverted stimulated emission by two-photon absorption was observed from the thin film of close-packed CsPbBr3 nanocrystals. The stimulated emission is found to be photostable and wavelength-tunable. We further realize the three-photon pumped stimulated emission in green...

460 citations


Journal ArticleDOI
TL;DR: These results confirm a negligible influence of surface defects in trapping charge carriers, which in turn results into desirable intrinsic transport properties, from the perspective of device applications, such as remarkably high carrier mobility, large diffusion length, and high luminescence quantum yield.
Abstract: Colloidal CsPbBr3 perovskite nanocrystals (NCs) have emerged as an excellent light emitting material in last one year. Using time domain and time-resolved THz spectroscopy and density functional theory based calculations, we establish 3-fold free carrier recombination mechanism, namely, nonradiative Auger, bimolecular electron–hole recombination, and inefficient trap-assisted recombination in 11 nm sized colloidal CsPbBr3 NCs. Our results confirm a negligible influence of surface defects in trapping charge carriers, which in turn results into desirable intrinsic transport properties, from the perspective of device applications, such as remarkably high carrier mobility (∼4500 cm2 V–1 s–1), large diffusion length (>9.2 μm), and high luminescence quantum yield (80%). Despite being solution processed and possessing a large surface to volume ratio, this combination of high carrier mobility and diffusion length, along with nearly ideal photoluminescence quantum yield, is unique compared to any other colloidal q...

Journal ArticleDOI
TL;DR: In this paper, the effects of a series of postdeposition ligand treatments on the photoluminescence (PL) of polycrystalline methylammonium lead triiodide perovskite thin films were studied.
Abstract: We study the effects of a series of post-deposition ligand treatments on the photoluminescence (PL) of polycrystalline methylammonium lead triiodide perovskite thin films. We show that a variety of Lewis bases can improve the bulk PL quantum efficiency (PLQE) and extend the average PL lifetime, ⟨τ⟩, with large enhancements concentrated at grain boundaries. Notably, we demonstrate thin-film PLQE as high as 35 ± 1% and ⟨τ⟩ as long as 8.82 ± 0.03 μs at solar equivalent carrier densities using tri-n-octylphosphine oxide-treated films. Using glow discharge optical emission spectroscopy and nuclear magnetic resonance spectroscopy, we show that the ligands are incorporated primarily at the film surface and are acting as electron donors. These results indicate it is possible to obtain thin-film PL lifetime and PLQE values that are comparable to those from single crystals by control over surface chemistry.

Journal ArticleDOI
TL;DR: In this article, a simple low-temperature solution-processed synthesis of pure Cs4PbBr6 with remarkable emission properties was reported, where the authors found that the pure material exhibits a 45% photoluminescence quantum yield (PLQY), in contrast to its three-dimensional counterpart, which exhibits more than 2 orders of magnitude lower PLQY.
Abstract: So-called zero-dimensional perovskites, such as Cs4PbBr6, promise outstanding emissive properties. However, Cs4PbBr6 is mostly prepared by melting of precursors that usually leads to a coformation of undesired phases. Here, we report a simple low-temperature solution-processed synthesis of pure Cs4PbBr6 with remarkable emission properties. We found that pure Cs4PbBr6 in solid form exhibits a 45% photoluminescence quantum yield (PLQY), in contrast to its three-dimensional counterpart, CsPbBr3, which exhibits more than 2 orders of magnitude lower PLQY. Such a PLQY of Cs4PbBr6 is significantly higher than that of other solid forms of lower-dimensional metal halide perovskite derivatives and perovskite nanocrystals. We attribute this dramatic increase in PL to the high exciton binding energy, which we estimate to be ∼353 meV, likely induced by the unique Bergerhoff–Schmitz–Dumont-type crystal structure of Cs4PbBr6, in which metal-halide-comprised octahedra are spatially confined. Our findings bring this class...

Journal ArticleDOI
08 Aug 2016-ACS Nano
TL;DR: The results demonstrate the versatility of colloidal perovskite nanoplatelets as a material platform, with tunability extending from the deep-UV, across the visible, into the near-IR.
Abstract: Colloidal perovskite nanoplatelets are a promising class of semiconductor nanomaterials—exhibiting bright luminescence, tunable and spectrally narrow absorption and emission features, strongly confined excitonic states, and facile colloidal synthesis. Here, we demonstrate the high degree of spectral tunability achievable through variation of the cation, metal, and halide composition as well as nanoplatelet thickness. We synthesize nanoplatelets of the form L2[ABX3]n−1BX4, where L is an organic ligand (octylammonium, butylammonium), A is a monovalent metal or organic molecular cation (cesium, methylammonium, formamidinium), B is a divalent metal cation (lead, tin), X is a halide anion (chloride, bromide, iodide), and n–1 is the number of unit cells in thickness. We show that variation of n, B, and X leads to large changes in the absorption and emission energy, while variation of the A cation leads to only subtle changes but can significantly impact the nanoplatelet stability and photoluminescence quantum y...

Journal ArticleDOI
TL;DR: It is concluded that the use of textured active layers has the ability to improve power conversion efficiencies for both LEDs and solar cells.
Abstract: In lead halide perovskite solar cells, there is at least one recycling event of electron–hole pair to photon to electron–hole pair at open circuit under solar illumination. This can lead to a significant reduction in the external photoluminescence yield from the internal yield. Here we show that, for an internal yield of 70%, we measure external yields as low as 15% in planar films, where light out-coupling is inefficient, but observe values as high as 57% in films on textured substrates that enhance out-coupling. We analyse in detail how externally measured rate constants and photoluminescence efficiencies relate to internal recombination processes under photon recycling. For this, we study the photo-excited carrier dynamics and use a rate equation to relate radiative and non-radiative recombination events to measured photoluminescence efficiencies. We conclude that the use of textured active layers has the ability to improve power conversion efficiencies for both LEDs and solar cells. Recombinations govern losses in solar cells. Here, Richteret al. use transient spectroscopy to evaluate how re-absorption and re-emission of photons in perovskite absorbers affect intrinsic recombination coefficients, and to differentiate between external and internal photoluminescence quantum yields.

Journal ArticleDOI
09 Mar 2016-ACS Nano
TL;DR: The creation of type-II staggered band alignment in MoTe2/MoS2 van der Waals (vdW) heterostructures with strong interlayer coupling could improve the fundamental understanding of the essential physics behind vdW heterostructure and help the design of next-generation infrared optoelectronics.
Abstract: We demonstrate the type-II staggered band alignment in MoTe2/MoS2 van der Waals (vdW) heterostructures and an interlayer optical transition at ∼1.55 μm. The photoinduced charge separation between the MoTe2/MoS2 vdW heterostructure is verified by Kelvin probe force microscopy (KPFM) under illumination, density function theory (DFT) simulations and photoluminescence (PL) spectroscopy. Photoelectrical measurements of MoTe2/MoS2 vdW heterostructures show a distinct photocurrent response in the infrared regime (1550 nm). The creation of type-II vdW heterostructures with strong interlayer coupling could improve our fundamental understanding of the essential physics behind vdW heterostructures and help the design of next-generation infrared optoelectronics.

Journal ArticleDOI
TL;DR: In this paper, the exciton dynamics in transition metal dichalcogenide monolayers were investigated using time-resolved photoluminescence experiments performed with optimized time resolution.
Abstract: We have investigated the exciton dynamics in transition metal dichalcogenide monolayers using time-resolved photoluminescence experiments performed with optimized time resolution. For MoS e2 monolayer, we measureτ 0 rad = 1.8 ± 0.2 ps at T = 7 K that we interpret as the intrinsic radiative recombination time. Similar values are found for WSe2 monolayers. Our detailed analysis suggests the following scenario: at low temperature( T ≲ 50 K ), the exciton oscillator strength is so large that the entire light can be emitted before the time required for the establishment of a thermalized exciton distribution. For higher lattice temperatures, the photoluminescence dynamics is characterized by two regimes with very different characteristic times. First the photoluminescence intensity drops drastically with a decay time in the range of the picosecond driven by the escape of excitons from the radiative window due to exciton-phonon interactions. Following this first nonthermal regime, a thermalized exciton population is established gradually yielding longer photoluminescence decay times in the nanosecond range. Both the exciton effective radiative recombination and nonradiative recombination channels including exciton-exciton annihilation control the latter. Finally the temperature dependence of the measured exciton and trion dynamics indicates that the two populations are not in thermodynamical equilibrium.

Journal ArticleDOI
TL;DR: For the first time, the synthesis and optical characterization of MA3 Bi2 Br9 perovskite QDs with photoluminescence quantum yield (PLQY) up to 12 %, which is much higher than Sn-based perovSKite nanocrystals is reported.
Abstract: Lead halide perovskite quantum dots (QDs) are promising candidates for future lighting applications, due to their high quantum yield, narrow full width at half maximum (FWHM), and wide color gamut However, the toxicity of lead represents a potential obstacle to their utilization Although tin(II) has been used to replace lead in films and QDs, the high intrinsic defect density and oxidation vulnerability typically leads to unsatisfactory material properties Bismuth, with much lower toxicity than lead, is promising to constitute lead-free perovskite materials because Bi3+ is isoelectronic to Pb2+ and more stable than Sn2+ Herein we report, for the first time, the synthesis and optical characterization of MA3Bi2Br9 perovskite QDs with photoluminescence quantum yield (PLQY) up to 12 %, which is much higher than Sn-based perovskite nanocrystals Furthermore, the photoluminescence (PL) peaks of MA3Bi2X9 QDs could be easily tuned from 360 to 540 nm through anion exchange

Journal ArticleDOI
TL;DR: A low-temperature solution growth of single crystal nanowires of formamidinium lead halide perovskite nanostructures that feature red-shifted emission and better thermal stability compared to MAPbX3 are reported.
Abstract: The excellent intrinsic optoelectronic properties of methylammonium lead halide perovskites (MAPbX3, X = Br, I), such as high photoluminescence quantum efficiency, long carrier lifetime, and high gain coupled with the facile solution growth of nanowires make them promising new materials for ultralow-threshold nanowire lasers. However, their photo and thermal stabilities need to be improved for practical applications. Herein, we report a low-temperature solution growth of single crystal nanowires of formamidinium lead halide perovskites (FAPbX3) that feature red-shifted emission and better thermal stability compared to MAPbX3. We demonstrate optically pumped room-temperature near-infrared (∼820 nm) and green lasing (∼560 nm) from FAPbI3 (and MABr-stabilized FAPbI3) and FAPbBr3 nanowires with low lasing thresholds of several microjoules per square centimeter and high quality factors of about 1500–2300. More remarkably, the FAPbI3 and MABr-stabilized FAPbI3 nanowires display durable room-temperature lasing u...

Journal ArticleDOI
TL;DR: The successful synthesis of brightly emitting colloidal cesium lead halide nanowires (NWs) with uniform diameters and tunable compositions with increased functionality in the form of fast photoresponse rates and the low defect density suggest CsPbX3 NWs as prospective materials for optoelectronic applications.
Abstract: Here, we demonstrate the successful synthesis of brightly emitting colloidal cesium lead halide (CsPbX3, X = Cl, Br, I) nanowires (NWs) with uniform diameters and tunable compositions. By using highly monodisperse CsPbBr3 NWs as templates, the NW composition can be independently controlled through anion-exchange reactions. CsPbX3 alloy NWs with a wide range of alloy compositions can be achieved with well-preserved morphology and crystal structure. The NWs are highly luminescent with photoluminescence quantum yields (PLQY) ranging from 20% to 80%. The bright photoluminescence can be tuned over nearly the entire visible spectrum. The high PLQYs together with charge transport measurements exemplify the efficient alloying of the anionic sublattice in a one-dimensional CsPbX3 system. The wires increased functionality in the form of fast photoresponse rates and the low defect density suggest CsPbX3 NWs as prospective materials for optoelectronic applications.

Journal ArticleDOI
TL;DR: 'softening' of the core-shell confinement potential strongly suppresses non-radiative Auger processes in charged nanocrystals, with successful non-blinking implementations demonstrated in CdSe-CdS core-thick-shell nanocry crystals and their modifications.
Abstract: Semiconductor nanocrystals offer an enormous diversity of potential device applications, based on their size-tunable photoluminescence, high optical stability and 'bottom-up' chemical approaches to self-assembly. However, the promise of such applications can be seriously limited by photoluminescence intermittency in nanocrystal emission, that is, 'blinking', arising from the escape of either one or both of the photoexcited carriers to the nanocrystal surface. In the first scenario, the remaining nanocrystal charge quenches photoluminescence via non-radiative Auger recombination, whereas for the other, the exciton is thought to be intercepted before thermalization and does not contribute to the photoluminescence. This Review summarizes the current understanding of the mechanisms responsible for nanocrystal blinking kinetics as well as core-shell engineering efforts to control such phenomena. In particular, 'softening' of the core-shell confinement potential strongly suppresses non-radiative Auger processes in charged nanocrystals, with successful non-blinking implementations demonstrated in CdSe-CdS core-thick-shell nanocrystals and their modifications.

Journal ArticleDOI
TL;DR: This work demonstrates enhanced water and light stability of high-surface-area colloidal perovskite nanocrystals by encapsulation of colloidal CsPbBr3 quantum dots into matched hydrophobic macroscale polymeric matrices, and provides a robust platform for diverse photonic applications.
Abstract: Lead halide perovskites hold promise for photonic devices, due to their superior optoelectronic properties. However, their use is limited by poor stability and toxicity. We demonstrate enhanced water and light stability of high-surface-area colloidal perovskite nanocrystals by encapsulation of colloidal CsPbBr3 quantum dots into matched hydrophobic macroscale polymeric matrices. This is achieved by mixing the quantum dots with presynthesized high-molecular-weight polymers. We monitor the photoluminescence quantum yield of the perovskite–polymer nanocomposite films under water-soaking for the first time, finding no change even after >4 months of continuous immersion in water. Furthermore, photostability is greatly enhanced in the macroscale polymer-encapsulated nanocrystal perovskites, which sustain >1010 absorption events per quantum dot prior to photodegradation, a significant threshold for potential device use. Control of the quantum dot shape in these thin-film polymer composite enables color tunabilit...

Journal ArticleDOI
TL;DR: A facile synthesis of highly monodisperse, cubic-shaped formamidinium lead bromide nanocrystals (FAPbBr3 NCs) with perovskite crystal structure, tunable PL in the range of 470–540 nm by adjusting the nanocrystal size, high quantum yield (QY) and PL fwhm of <22 nm is developed.
Abstract: Bright green emitters with adjustable photoluminescence (PL) maxima in the range of 530–535 nm and full-width at half-maxima (fwhm) of <25 nm are particularly desirable for applications in television displays and related technologies. Toward this goal, we have developed a facile synthesis of highly monodisperse, cubic-shaped formamidinium lead bromide nanocrystals (FAPbBr3 NCs) with perovskite crystal structure, tunable PL in the range of 470–540 nm by adjusting the nanocrystal size (5–12 nm), high quantum yield (QY) of up to 85% and PL fwhm of <22 nm. High QYs are also retained in films of FAPbBr3 NCs. In addition, these films exhibit low thresholds of 14 ± 2 μJ cm–2 for amplified spontaneous emission.

Journal ArticleDOI
TL;DR: In this article, a green perovskite-based light-emitting diodes (PeLEDs) were demonstrated using a new poly(ethylene oxide)-additive spin-coating method.
Abstract: Highly bright light-emitting diodes based on solution-processed all-inorganic perovskite thin film are demonstrated. The cesium lead bromide (CsPbBr3 ) created using a new poly(ethylene oxide)-additive spin-coating method exhibits photoluminescence quantum yield up to 60% and excellent uniformity of electrical current distribution. Using the smooth CsPbBr3 films as emitting layers, green perovskite-based light-emitting diodes (PeLEDs) exhibit electroluminescent brightness and efficiency above 53 000 cd m-2 and 4%: a new benchmark of device performance for all-inorganic PeLEDs.

Journal ArticleDOI
TL;DR: High-pressure PL data indicate that compression can mitigate this PL redshift and may afford higher steady-state voltages from these absorbers and show that pressure can significantly alter the transport and thermodynamic properties of these technologically important semiconductors.
Abstract: We report the first high-pressure single-crystal structures of hybrid perovskites. The crystalline semiconductors (MA)PbX3 (MA = CH3NH3+, X = Br– or I–) afford us the rare opportunity of understanding how compression modulates their structures and thereby their optoelectronic properties. Using atomic coordinates obtained from high-pressure single-crystal X-ray diffraction we track the perovskites’ precise structural evolution upon compression. These structural changes correlate well with pressure-dependent single-crystal photoluminescence (PL) spectra and high-pressure bandgaps derived from density functional theory. We further observe dramatic piezochromism where the solids become lighter in color and then transition to opaque black with compression. Indeed, electronic conductivity measurements of (MA)PbI3 obtained within a diamond-anvil cell show that the material’s resistivity decreases by 3 orders of magnitude between 0 and 51 GPa. The activation energy for conduction at 51 GPa is only 13.2(3) meV, su...

Journal ArticleDOI
TL;DR: All inorganic CsPbX3 (X = Cl, Br, I) perovskite nanocrystals with 50-85% photoluminescence quantum yields and tunable emission in the range of 440-682 nm have been successfully synthesized at room temperature in open air.

Journal ArticleDOI
TL;DR: In this paper, a two-step deposition approach was proposed to obtain continuous and well-structured thin films of Cs2SnI6, which is a one-half Sn-deficient 0-D perovskite derivative (i.e., the compound can also be written as CsSn0.5I3, with a structure consisting of isolated SnI64- octahedra).
Abstract: In this work, we describe details of a two-step deposition approach that enables the preparation of continuous and well-structured thin films of Cs2SnI6, which is a one-half Sn-deficient 0-D perovskite derivative (i.e., the compound can also be written as CsSn0.5I3, with a structure consisting of isolated SnI64– octahedra). The films were characterized using powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), UV–vis spectroscopy, photoluminescence (PL), photoelectron spectroscopy (UPS, IPES, XPS), and Hall effect measurements. UV–vis and PL measurements indicate that the obtained Cs2SnI6 film is a semiconductor with a band gap of 1.6 eV. This band gap was further confirmed by the UPS and IPES spectra, which were well reproduced by the calculated density of states with the HSE hybrid functional. The Cs2SnI6 films exhibited n-type conduction with a carrier density of 6(1) × 1016 cm–3 and mobility of 2.9(3) cm2/V·s. While the computationally derived band str...

Journal ArticleDOI
TL;DR: In this article, the phase separation of halide ion movement in mixed halide films is tracked through excited-state behavior using emission and transient absorption spectroscopy tools, and the time scale with which such separation occurs under laser irradiation (405 nm, 25 mW/cm2 to 1.7 W/cm 2) as well as dark recovery.
Abstract: Mixed halide lead perovskites (e.g., CH3NH3PbBrxI3–x) undergo phase segregation creating iodide-rich and bromide-rich domains when subjected to visible irradiation. This intriguing aspect of halide ion movement in mixed halide films is now being tracked through excited-state behavior using emission and transient absorption spectroscopy tools. These transient experiments have allowed us to establish the time scale with which such separation occurs under laser irradiation (405 nm, 25 mW/cm2 to 1.7 W/cm2) as well as dark recovery. While the phase separation occurs with a rate constant of 0.1–0.3 s–1, the recovery occurs over a time period of several minutes to an hour. The relative photoluminescence quantum yield observed for Br-rich regions (em. max 530 nm) is nearly 2 orders of magnitude lower than that of I-rich regions (em. max 760 nm) and arises from the fact that I-rich regions serve as sinks for photogenerated charge carriers. Understanding such cascading charge transfer to localized sites could furth...

Journal ArticleDOI
TL;DR: The presented IFE-based CDs fluorescence sensing strategy gives new insight on the development of the facile and sensitive optical probe for enzyme activity assay because the surface modification or the linking between the receptor and the fluorophore is no longer required.
Abstract: A simple and sensitive fluorescent assay for detecting alkaline phosphatase (ALP) based on the inner filter effect (IFE) has been proven, which is conceptually different from the previously reported ALP fluorescent assays. In this sensing platform, N-doped carbon dots (CDs) with a high quantum yield of 49% were prepared by one-pot synthesis and were directly used as a fluorophore in IFE. p-Nitrophenylphosphate (PNPP) was employed to act as an ALP substrate, and its enzyme catalytic product (p-nitrophenol (PNP)) was capable of functioning as a powerful absorber in IFE to influence the excitation of fluorophore (CDs). When in the presence of ALP, PNPP was transformed into PNP and induced the absorption band transition from 310 to 405 nm, which resulted in the complementary overlap between the absorption of PNP and the excitation of CDs. Because of the competitive absorption, the excitation of CDs was significantly weakened, resulting in the quenching of CDs. The present IFE-based sensing strategy showed a good linear relationship from 0.01 to 25 U/L (R(2) = 0.996) and provided an exciting detection limit of 0.001 U/L (signal-to-noise ratio of 3). The proposed sensing approach was successfully applied to ALP sensing in serum samples, ALP inhibitor investigation and phosphatase cell imaging. The presented IFE-based CDs fluorescence sensing strategy gives new insight on the development of the facile and sensitive optical probe for enzyme activity assay because the surface modification or the linking between the receptor and the fluorophore is no longer required.

Journal ArticleDOI
TL;DR: Investigation of the extraordinary photoluminescence behavior of three representatives of this important class of photonic materials provides new insights into the salient emission properties of perovskite materials, which define their performance in solar cells and light-emitting devices.
Abstract: Emission characteristics of metal halide perovskites play a key role in the current widespread investigations into their potential uses in optoelectronics and photonics However, a fundamental understanding of the molecular origin of the unusual blueshift of the bandgap and dual emission in perovskites is still lacking In this direction, we investigated the extraordinary photoluminescence behavior of three representatives of this important class of photonic materials, that is, CH3NH3PbI3, CH3NH3PbBr3, and CH(NH2)2PbBr3, which emerged from our thorough studies of the effects of temperature on their bandgap and emission decay dynamics using time-integrated and time-resolved photoluminescence spectroscopy The low-temperature (<100 K) photoluminescence of CH3NH3PbI3 and CH3NH3PbBr3 reveals two distinct emission peaks, whereas that of CH(NH2)2PbBr3 shows a single emission peak Furthermore, irrespective of perovskite composition, the bandgap exhibits an unusual blueshift by raising the temperature from 15 to 300 K Density functional theory and classical molecular dynamics simulations allow for assigning the additional photoluminescence peak to the presence of molecularly disordered orthorhombic domains and also rationalize that the unusual blueshift of the bandgap with increasing temperature is due to the stabilization of the valence band maximum Our findings provide new insights into the salient emission properties of perovskite materials, which define their performance in solar cells and light-emitting devices