scispace - formally typeset
Search or ask a question

Showing papers on "Photoluminescence published in 2017"


Journal ArticleDOI
TL;DR: Encapsulated 2D InSe expands the family of graphene-like semiconductors and, in terms of quality, is competitive with atomically thin dichalcogenides and black phosphorus.
Abstract: Encapsulated few-layer InSe exhibits a remarkably high electronic quality, which is promising for the development of ultrathin-body high-mobility nanoelectronics. A decade of intense research on two-dimensional (2D) atomic crystals has revealed that their properties can differ greatly from those of the parent compound1,2. These differences are governed by changes in the band structure due to quantum confinement and are most profound if the underlying lattice symmetry changes3,4. Here we report a high-quality 2D electron gas in few-layer InSe encapsulated in hexagonal boron nitride under an inert atmosphere. Carrier mobilities are found to exceed 103 cm2 V−1 s−1 and 104 cm2 V−1 s−1 at room and liquid-helium temperatures, respectively, allowing the observation of the fully developed quantum Hall effect. The conduction electrons occupy a single 2D subband and have a small effective mass. Photoluminescence spectroscopy reveals that the bandgap increases by more than 0.5 eV with decreasing the thickness from bulk to bilayer InSe. The band-edge optical response vanishes in monolayer InSe, which is attributed to the monolayer's mirror-plane symmetry. Encapsulated 2D InSe expands the family of graphene-like semiconductors and, in terms of quality, is competitive with atomically thin dichalcogenides5,6,7 and black phosphorus8,9,10,11.

985 citations


Journal ArticleDOI
TL;DR: Solution-processed CsPbBr3 quantum-dot light-emitting diodes with a 50-fold external quantum efficiency improvement are achieved through balancing surface passivation and carrier injection via ligand density control, which induces the coexistence of high levels of ink stability, photoluminescence quantum yields, thin-film uniformity, and carrier-injection efficiency.
Abstract: Solution-processed CsPbBr3 quantum-dot light-emitting diodes with a 50-fold external quantum efficiency improvement (up to 6.27%) are achieved through balancing surface passivation and carrier injection via ligand density control (treating with hexane/ethyl acetate mixed solvent), which induces the coexistence of high levels of ink stability, photoluminescence quantum yields, thin-film uniformity, and carrier-injection efficiency.

977 citations


Journal ArticleDOI
19 Sep 2017-ACS Nano
TL;DR: It is shown that a high room-temperature photoluminescence quantum yield of up to 100% can be obtained in CsPbI3 perovskite QDs, signifying the achievement of almost complete elimination of the trapping defects.
Abstract: Perovskite quantum dots (QDs) as a new type of colloidal nanocrystals have gained significant attention for both fundamental research and commercial applications owing to their appealing optoelectronic properties and excellent chemical processability. For their wide range of potential applications, synthesizing colloidal QDs with high crystal quality is of crucial importance. However, like most common QD systems such as CdSe and PbS, those reported perovskite QDs still suffer from a certain density of trapping defects, giving rise to detrimental nonradiative recombination centers and thus quenching luminescence. In this paper, we show that a high room-temperature photoluminescence quantum yield of up to 100% can be obtained in CsPbI3 perovskite QDs, signifying the achievement of almost complete elimination of the trapping defects. This is realized with our improved synthetic protocol that involves introducing organolead compound trioctylphosphine–PbI2 (TOP–PbI2) as the reactive precursor, which also leads...

684 citations


Journal ArticleDOI
TL;DR: This work verifies once again that one-dimensional systems are favourable for exciton self-trapping to produce highly efficient below-gap broadband luminescence, and opens up a new route towards superior light emitters based on bulk quantum materials.
Abstract: Organic-inorganic hybrid metal halide perovskites, an emerging class of solution processable photoactive materials, welcome a new member with a one-dimensional structure. Herein we report the synthesis, crystal structure and photophysical properties of one-dimensional organic lead bromide perovskites, C4N2H14PbBr4, in which the edge sharing octahedral lead bromide chains [PbBr4 2−]∞ are surrounded by the organic cations C4N2H14 2+ to form the bulk assembly of core-shell quantum wires. This unique one-dimensional structure enables strong quantum confinement with the formation of self-trapped excited states that give efficient bluish white-light emissions with photoluminescence quantum efficiencies of approximately 20% for the bulk single crystals and 12% for the microscale crystals. This work verifies once again that one-dimensional systems are favourable for exciton self-trapping to produce highly efficient below-gap broadband luminescence, and opens up a new route towards superior light emitters based on bulk quantum materials. Low-dimensional systems exhibit unique optical properties. Yuanet al. demonstrate one-dimensional organic-inorganic hybrid metal halide perovskites with highly efficient bluish white-light emission due to efficient exciton self-trapping in the quantum-confined structure.

564 citations


Journal ArticleDOI
TL;DR: In this article, the authors show that encapsulation of monolayer MoS2 in hexagonal boron nitride can efficiently suppress the inhomogeneous contribution to the exciton linewidth, as they measure in photoluminescence and reflectivity a FWHM down to 2 meV at T=4
Abstract: The strong light-matter interaction and the valley selective optical selection rules make monolayer (ML) MoS2 an exciting 2D material for fundamental physics and optoelectronics applications. But, so far, optical transition linewidths even at low temperature are typically as large as a few tens of meV and contain homogeneous and inhomogeneous contributions. This prevented in-depth studies, in contrast to the better-characterized ML materials MoSe2 and WSe2. In this work, we show that encapsulation of ML MoS2 in hexagonal boron nitride can efficiently suppress the inhomogeneous contribution to the exciton linewidth, as we measure in photoluminescence and reflectivity a FWHM down to 2 meV at T=4 K. Narrow optical transition linewidths are also observed in encapsulated WS2, WSe2, and MoSe2 MLs. This indicates that surface protection and substrate flatness are key ingredients for obtaining stable, high-quality samples. Among the new possibilities offered by the well-defined optical transitions, we measure the homogeneous broadening induced by the interaction with phonons in temperature-dependent experiments. We uncover new information on spin and valley physics and present the rotation of valley coherence in applied magnetic fields perpendicular to the ML.

540 citations


Journal ArticleDOI
TL;DR: In this paper, the impact of fluorescent derivatives of citrazinic acid on the optical properties of carbon dots has been investigated using three samples employing citric acid and three different nitrogen sources: ethylenediamine, hexamethylenetetramine, and triethanolamine.
Abstract: Nitrogen-doped carbon dots synthesized from citric acid as a carbon precursor have recently been considered to contain fluorescent derivatives of citrazinic acid, which contribute to their emission in the blue spectral range. To study the impact of such molecular fluorescent species on the optical properties of carbon dots, we synthesized three samples employing citric acid and three different nitrogen sources: ethylenediamine, hexamethylenetetramine, and triethanolamine. On the basis of the analysis of the nitrogen content and its coordination by X-ray photoelectron spectroscopy, FTIR spectra, and systematically comparing absorption, steady-state emission, and photoluminescence decays of each kind of carbon dot, we derive the influence of the molecular precursors and gain further understanding of the complex structure of carbon dots highlighting the strong impact of molecular fluorescence in the samples produced with ethylenediamine and hexamethylenetetramine.

474 citations


Journal ArticleDOI
01 Feb 2017-ACS Nano
TL;DR: This work demonstrates the partial replacement of Pb with Mn through phosphine-free hot-injection preparation of CsPbxMn1-xCl3 QDs in colloidal solution, which greatly enhances the photoluminescence quantum yields of C sPbCl3 from 5 to 54%.
Abstract: CsPbX3 (X = Cl, Br, I) perovskite quantum dots (QDs) are potential emitting materials for illumination and display applications, but toxic Pb is not environment- and user-friendly. In this work, we demonstrate the partial replacement of Pb with Mn through phosphine-free hot-injection preparation of CsPbxMn1–xCl3 QDs in colloidal solution. The Mn substitution ratio is up to 46%, and the as-prepared QDs maintain the tetragonal crystalline structure of the CsPbCl3 host. Meaningfully, Mn substitution greatly enhances the photoluminescence quantum yields of CsPbCl3 from 5 to 54%. The enhanced emission is attributed to the energy transfer of photoinduced excitons from the CsPbCl3 host to the doped Mn, which facilitates exciton recombination via a radiative pathway. The intensity and position of this Mn-related emission are also tunable by altering the experimental parameters, such as reaction temperature and the Pb-to-Mn feed ratio. A light-emitting diode (LED) prototype is further fabricated by employing the a...

459 citations


Journal ArticleDOI
TL;DR: Lead-based perovskite nanocrystals have outstanding optical properties and cheap synthesis conferring them a tremendous potential in the field of optoelectronic devices, and the NCs exhibited high stability towards air exposure exceeding 30 days.
Abstract: Lead-based perovskite nanocrystals (NCs) have outstanding optical properties and cheap synthesis conferring them a tremendous potential in the field of optoelectronic devices. However, two critical problems are still unresolved and hindering their commercial applications: one is the fact of being lead-based and the other is the poor stability. Lead-free all-inorganic perovskite Cs3Bi2X9 (X=Cl, Br, I) NCs are synthesized with emission wavelength ranging from 400 to 560 nm synthesized by a facile room temperature reaction. The ligand-free Cs3Bi2Br9 NCs exhibit blue emission with photoluminescence quantum efficiency (PLQE) about 0.2 %. The PLQE can be increased to 4.5 % when extra surfactant (oleic acid) is added during the synthesis processes. This improvement stems from passivation of the fast trapping process (2–20 ps). Notably, the trap states can also be passivated under humid conditions, and the NCs exhibited high stability towards air exposure exceeding 30 days.

444 citations


Journal ArticleDOI
TL;DR: This paper reports a unique spontaneous charge (electron/hole) separation property in multilayered (BA)2(MA)n-1PbnI3n+1 (BA = CH3(CH2)3NH3+, MA = CH 3NH3+) 2D perovskite films by studying the charge carrier dynamics using ultrafast transient absorption and photoluminescence spectroscopy.
Abstract: Two-dimensional (2D) organolead halide perovskites are promising for various optoelectronic applications. Here we report a unique spontaneous charge (electron/hole) separation property in multilayered (BA)2(MA)n−1PbnI3n+1 (BA = CH3(CH2)3NH3+, MA = CH3NH3+) 2D perovskite films by studying the charge carrier dynamics using ultrafast transient absorption and photoluminescence spectroscopy. Surprisingly, the 2D perovskite films, although nominally prepared as “n = 4”, are found to be mixture of multiple perovskite phases, with n = 2, 3, 4 and ≈ ∞, that naturally align in the order of n along the direction perpendicular to the substrate. Driven by the band alignment between 2D perovskites phases, we observe consecutive photoinduced electron transfer from small-n to large-n phases and hole transfer in the opposite direction on hundreds of picoseconds inside the 2D film of ∼358 nm thickness. This internal charge transfer efficiently separates electrons and holes to the upper and bottom surfaces of the films, whi...

429 citations


Journal ArticleDOI
TL;DR: In this article, the optical and electronic properties of single crystals of the widebandgap semiconducting defect halide perovskites A3M2I9 (A = Cs, Rb; M = Bi, Sb) have been investigated.
Abstract: The optical and electronic properties of Bridgman grown single crystals of the wide-bandgap semiconducting defect halide perovskites A3M2I9 (A = Cs, Rb; M = Bi, Sb) have been investigated. Intense Raman scattering was observed at room temperature for each compound, indicating high polarizability and strong electron–phonon coupling. Both low-temperature and room-temperature photoluminescence (PL) were measured for each compound. Cs3Sb2I9 and Rb3Sb2I9 have broad PL emission bands between 1.75 and 2.05 eV with peaks at 1.96 and 1.92 eV, respectively. The Cs3Bi2I9 PL spectra showed broad emission consisting of several overlapping bands in the 1.65–2.2 eV range. Evidence of strong electron–phonon coupling comparable to that of the alkali halides was observed in phonon broadening of the PL emission. Effective phonon energies obtained from temperature-dependent PL measurements were in agreement with the Raman peak energies. A model is proposed whereby electron–phonon interactions in Cs3Sb2I9, Rb3Sb2I9, and Cs3Bi...

422 citations


Journal ArticleDOI
TL;DR: ZnO nanoparticles (NPs) can provide an effective route for CsPbBr3 nucleation during the spin-coating and annealing process, contributing to compact and smooth thin films with no obviously large voids or pinholes as mentioned in this paper.

Journal ArticleDOI
11 Sep 2017-ACS Nano
TL;DR: The developed full-inorganic lead-free Sb-perovskite QDs with high PLQY and stable emission promise great potential for efficient emission candidates.
Abstract: Colloidal quantum dots (QDs) of lead halide perovskite have recently received great attention owing to their remarkable performances in optoelectronic applications. However, their wide applications are hindered from toxic lead element, which is not environment- and consumer-friendly. Herein, we utilized heterovalent substitution of divalent lead (Pb2+) with trivalent antimony (Sb3+) to synthesize stable and brightly luminescent Cs3Sb2Br9 QDs. The lead-free, full-inorganic QDs were fabricated by a modified ligand-assisted reprecipitation strategy. A photoluminescence quantum yield (PLQY) was determined to be 46% at 410 nm, which was superior to that of other reported halide perovskite QDs. The PL enhancement mechanism was unraveled by surface composition derived quantum-well band structure and their large exciton binding energy. The Br-rich surface and the observed 530 meV exciton binding energy were proposed to guarantee the efficient radiative recombination. In addition, we can also tune the inorganic pe...

Journal ArticleDOI
TL;DR: This work tailor the composition of quasi-2D perovskites to direct the energy transfer into the lowest-bandgap minority phase and to do so faster than it is lost to nonradiative centers, and reports light-emitting diodes with external quantum efficiencies of 7.4% and a high luminescence of 8400 cd/m2.
Abstract: Organo-metal halide perovskites are a promising platform for optoelectronic applications in view of their excellent charge-transport and bandgap tunability. However, their low photoluminescence quantum efficiencies, especially in low-excitation regimes, limit their efficiency for light emission. Consequently, perovskite light-emitting devices are operated under high injection, a regime under which the materials have so far been unstable. Here we show that, by concentrating photoexcited states into a small subpopulation of radiative domains, one can achieve a high quantum yield, even at low excitation intensities. We tailor the composition of quasi-2D perovskites to direct the energy transfer into the lowest-bandgap minority phase and to do so faster than it is lost to nonradiative centers. The new material exhibits 60% photoluminescence quantum yield at excitation intensities as low as 1.8 mW/cm2, yielding a ratio of quantum yield to excitation intensity of 0.3 cm2/mW; this represents a decrease of 2 orde...

Journal ArticleDOI
TL;DR: The local structures of lead in the primitive perovskite and its derivatives to PL spectra as well as photoconductivity are correlated for correlation between photocurrent generation and photoluminescence (PL) emission.
Abstract: High-quality and millimeter-sized perovskite single crystals of CsPbBr3 and Cs4PbBr6 were prepared in organic solvents and studied for correlation between photocurrent generation and photoluminescence (PL) emission. The CsPbBr3 crystals, which have a 3D perovskite structure, showed a highly sensitive photoresponse and poor PL signal. In contrast, Cs4PbBr6 crystals, which have a 0D perovskite structure, exhibited more than 1 order of magnitude higher PL intensity than CsPbBr3, which generated an ultralow photoresponse under illumination. Their contrasting optoelectrical characteristics were attributed to different exciton binding energies, induced by coordination geometry of the [PbBr6]4– octahedron sublattices. This work correlated the local structures of lead in the primitive perovskite and its derivatives to PL spectra as well as photoconductivity.

Journal ArticleDOI
TL;DR: It is argued that the photophysics of these carbon nitride materials show closer parallels with inorganic semiconductors than conjugated polymers, and that the key challenge to optimize photocatalytic activity of these materials is to prevent electron trapping into deep, and photoc atalytically inactive, electron trap states.
Abstract: Carbon nitride (g-C3N4) as a benchmark polymer photocatalyst is attracting significant research interest because of its visible light photocatalytic performance combined with good stability and facile synthesis. However, little is known about the fundamental photophysical processes of g-C3N4, which are key to explain and promote photoactivity. Using time-resolved absorption and photoluminescence spectroscopies, we have investigated the photophysics of a series of carbon nitrides on time scales ranging from femtoseconds to seconds. Free charge carriers form within a 200 fs excitation pulse, trap on the picosecond time scale with trap states in a range of energies, and then recombine with power law decays that are indicative of charge trapping–detrapping processes. Delayed photoluminescence is assigned to thermal excitation of trapped carriers back up to the conduction/valence bands. We develop a simple, quantitative model for the charge carrier dynamics in these photocatalysts, which includes carrier relax...

Journal ArticleDOI
TL;DR: In this article, structural and optical studies of a series of two-dimensional hybrid perovskites were conducted, and it was shown that broadband emission upon near-ultraviolet excitation is common to (001) lead-bromide perovsites.
Abstract: Through structural and optical studies of a series of two-dimensional hybrid perovskites, we show that broadband emission upon near-ultraviolet excitation is common to (001) lead-bromide perovskites. Importantly, we find that the relative intensity of the broad emission correlates with increasing out-of-plane distortion of the Pb–(μ-Br)–Pb angle in the inorganic sheets. Temperature- and power-dependent photoluminescence data obtained on a representative (001) perovskite support an intrinsic origin to the broad emission from the bulk material, where photogenerated carriers cause excited-state lattice distortions mediated through electron–lattice coupling. In contrast, most inorganic phosphors contain extrinsic emissive dopants or emissive surface sites. The design rules established here could allow us to systematically optimize white-light emission from layered hybrid perovskites by fine-tuning the bulk crystal structure.

Journal ArticleDOI
09 Mar 2017-Chem
TL;DR: In this article, the Ruddlesden-Popper (CH3(CH2)3NH3)2(CH3 NH3)n−1PbnI3n+1) family was successfully synthesized in high yield and purity, which was confirmed to be a direct band-gap semiconductor with Eg = 1.83 eV.

Journal ArticleDOI
TL;DR: A facile route to synthesize carbon dots with red emission due to the doping effect of S and N elements, borrowing from the concept of the semiconductor is developed, demonstrating that the S,N-CDs are a potentially excellent bioimaging component in the theranostic field.
Abstract: It is highly desirable and a great challenge for red light emission of carbon dots under long wavelength excitation Here, we developed a facile route to synthesize carbon dots with red emission due to the doping effect of S and N elements, borrowing from the concept of the semiconductor The maximum emission locates at 594 nm under 560 nm excitation The absolute photoluminescence (PL) quantum yield (QY) is as high as 29% and 22% in ethanol and water, respectively XPS and FTIR spectra illustrated that there exist -SCN and -COOH groups on the surface of the carbon dots They endow the carbon dots with high sensitivity for ion detection of Fe3+ The quenched PL emission of Fe3+-S,N-CDs can be recovered by adding ascorbic acid to release the -COOH and -SCN group due to Fe2+ formation in the presence of ascorbic acid High PL QY of red emission is beneficial to application in bioimaging Doxorubicin was loaded onto carbon dots through π–π stacking to form a theranostic agent When the CD-Dox was injected in

Journal ArticleDOI
TL;DR: Experimental results are in agreement with the optical selection rules deduced from group theory analysis, highlighting the key role played by the different symmetries of the conduction and valence bands split by the spin-orbit interaction.
Abstract: © 2017 American Physical Society. The optical selection rules for interband transitions in WSe2, WS2, and MoSe2 transition metal dichalcogenide monolayers are investigated by polarization-resolved photoluminescence experiments with a signal collection from the sample edge. These measurements reveal a strong polarization dependence of the emission lines. We see clear signatures of the emitted light with the electric field oriented perpendicular to the monolayer plane, corresponding to an interband optical transition forbidden at normal incidence used in standard optical spectroscopy measurements. The experimental results are in agreement with the optical selection rules deduced from group theory analysis, highlighting the key role played by the different symmetries of the conduction and valence bands split by the spin-orbit interaction. These studies yield a direct determination of the bright-dark exciton splitting, for which we measure 40±1 meV and 55±2 meV in WSe2 and WS2 monolayer, respectively.

Journal ArticleDOI
TL;DR: In this paper, an oxygen defects-mediated Z-scheme mechanism was proposed for the charge separation in the heterojunction, which involved the recombining of photoinduced electrons that were trapped in the oxygen defects level of OD-ZnO directly with the holes in the valence band of g-C 3 N 4 at the interface.
Abstract: g-C 3 N 4 nanosheets were coupled with oxygen-defective ZnO nanorods (OD-ZnO) to form a heterojunction photocatalyst with a core-shell structure. Multiple optical and electrochemical analysis including electrochemical impedance spectroscopy, photocurrent response and steady/transient photoluminescence spectroscopy revealed that the g-C 3 N 4 /OD-ZnO heterojunction exhibited increased visible-light absorption, improved charge generation/separation efficiency as well as prolonged lifetime, leading to the enhanced photocatalytic activities for the degradation of 4-chlorophenol under visible-light illumination (λ > 420 nm). An oxygen defects-mediated Z-scheme mechanism was proposed for the charge separation in the heterojunction, which involved the recombining of photoinduced electrons that were trapped in the oxygen defects-level of OD-ZnO directly with the holes in the valence band of g-C 3 N 4 at the heterojunction interface. The detection of surface generated reactive species including O 2 − and OH clearly supported the Z-scheme mechanism. Moreover, the g-C 3 N 4 /OD-ZnO photocatalysts also exhibited enhanced visible-light Z-scheme H 2 evolution activity, with an optimal H 2 evolution rate of about 5 times than that of pure g -C 3 N 4 . The present work not only provided an alternative strategy for construction of novel visible-light-driven Z-scheme photocatalysts, but also gained some new insights into the role of oxygen-defects of semiconductors in mediating the Z-scheme charge separation.

Journal ArticleDOI
TL;DR: The key unknown parameters in MoSe2/WSe2 heterobilayers are determined by using rational device design and submicrometer angle-resolved photoemission spectroscopy (μ-ARPES) in combination with photoluminescence and the spectrum of a rotationally aligned heterobilayer reflects a mixture of commensurate and incommensurate domains.
Abstract: Combining monolayers of different two-dimensional semiconductors into heterostructures creates new phenomena and device possibilities. Understanding and exploiting these phenomena hinge on knowing the electronic structure and the properties of interlayer excitations. We determine the key unknown parameters in MoSe2/WSe2 heterobilayers by using rational device design and submicrometer angle-resolved photoemission spectroscopy (μ-ARPES) in combination with photoluminescence. We find that the bands in the K-point valleys are weakly hybridized, with a valence band offset of 300 meV, implying type II band alignment. We deduce that the binding energy of interlayer excitons is more than 200 meV, an order of magnitude higher than that in analogous GaAs structures. Hybridization strongly modifies the bands at Γ, but the valence band edge remains at the K points. We also find that the spectrum of a rotationally aligned heterobilayer reflects a mixture of commensurate and incommensurate domains. These results directly answer many outstanding questions about the electronic nature of MoSe2/WSe2 heterobilayers and demonstrate a practical approach for high spectral resolution in ARPES of device-scale structures.

Journal ArticleDOI
TL;DR: In this paper, the authors reported spontaneous circularly polarized photoluminescence in monolayer bulk chromium tri-iodide (CrI3) under linearly polarized excitation, with helicity determined by the magnetization direction.
Abstract: Bulk chromium tri-iodide (CrI3) has long been known as a layered van der Waals ferromagnet 1 . However, its monolayer form was only recently isolated and confirmed to be a truly two-dimensional (2D) ferromagnet 2 , providing a new platform for investigating light–matter interactions and magneto-optical phenomena in the atomically thin limit. Here, we report spontaneous circularly polarized photoluminescence in monolayer CrI3 under linearly polarized excitation, with helicity determined by the monolayer magnetization direction. In contrast, the bilayer CrI3 photoluminescence exhibits vanishing circular polarization, supporting the recently uncovered anomalous antiferromagnetic interlayer coupling in CrI3 bilayers 2 . Distinct from the Wannier–Mott excitons that dominate the optical response in well-known 2D van der Waals semiconductors 3 , our absorption and layer-dependent photoluminescence measurements reveal the importance of ligand-field and charge-transfer transitions to the optoelectronic response of atomically thin CrI3. We attribute the photoluminescence to a parity-forbidden d–d transition characteristic of Cr3+ complexes, which displays broad linewidth due to strong vibronic coupling and thickness-independent peak energy due to its localized molecular orbital nature. Atomically thin chromium tri-iodide is shown to be a 2D ferromagnetic insulator with an optical response dominated by ligand-field transitions, emitting circularly polarized photoluminescence with a helicity determined by the magnetization direction.

Journal ArticleDOI
TL;DR: This study presents a solution-phase synthesis of efficient green-emitting perovskite NCs embedded in robust and air-stable rhombic prism hexabromide microcrystals, reaching a PLQY of 90%.
Abstract: Perovskite nanocrystals (NCs) have attracted attention due to their high photoluminescence quantum yield (PLQY) in solution; however, maintaining high emission efficiency in the solid state remains a challenge. This study presents a solution-phase synthesis of efficient green-emitting perovskite NCs (CsPbBr3) embedded in robust and air-stable rhombic prism hexabromide (Cs4PbBr6) microcrystals, reaching a PLQY of 90%. Theoretical modeling and experimental characterization suggest that lattice matching between the NCs and the matrix contribute to improved passivation, while spatial confinement enhances the radiative rate of the NCs. In addition, dispersing the NCs in a matrix prevents agglomeration, which explains their high PLQY.

Journal ArticleDOI
TL;DR: The observation of a doublet structure in the low-temperature photoluminescence of interlayer excitons in heterostructure consisting of monolayer MoSe2 and WSe2 provides fundamental insights into long-lived interlayer states in van der Waals heterostructures with possible bosonic many-body interactions.
Abstract: We report the observation of a doublet structure in the low-temperature photoluminescence of interlayer excitons in heterostructures consisting of monolayer MoSe2 and WSe2. Both peaks exhibit long photoluminescence lifetimes of several tens of nanoseconds up to 100 ns verifying the interlayer nature of the excitons. The energy and line width of both peaks show unusual temperature and power dependences. While the low-energy peak dominates the spectra at low power and low temperatures, the high-energy peak dominates for high power and temperature. We explain the findings by two kinds of interlayer excitons being either indirect or quasi-direct in reciprocal space. Our results provide fundamental insights into long-lived interlayer states in van der Waals heterostructures with possible bosonic many-body interactions.

Journal ArticleDOI
20 Mar 2017-Nature
TL;DR: A way to decrease the band-edge degeneracy and single-dot photoluminescence linewidth in CQDs by means of uniform biaxial strain is demonstrated and continuous-wave lasing from CQD solids is demonstrated, expanding the library of solution-processed materials that may be capable of continuous- wave lasing.
Abstract: By switching shell growth on and off on the (0001) facet of wurtzite CdSe cores to produce a built-in biaxial strain that lowers the optical gain threshold, we achieve continuous-wave lasing in colloidal quantum dot films. The electronic structure of colloidal quantum dots lends them a host of desirable optical properties, but they typically perform poorly as laser materials. Fengjia Fan et al. have developed a scheme for tuning this electronic structure in such a way that the barriers to laser action might be overcome. Specifically, they developed a synthesis strategy in which the shell of material encompassing the core of the quantum dot is asymmetric and compressive. This effectively squeezes the particle, thereby modifying the electronic structure to favour laser-like emissions. Colloidal quantum dots (CQDs) feature a low degeneracy of electronic states at the band edges compared with the corresponding bulk material1, as well as a narrow emission linewidth2,3. Unfortunately for potential laser applications, this degeneracy is incompletely lifted in the valence band, spreading the hole population among several states at room temperature4,5,6. This leads to increased optical gain thresholds, demanding high photoexcitation levels to achieve population inversion (more electrons in excited states than in ground states—the condition for optical gain). This, in turn, increases Auger recombination losses7, limiting the gain lifetime to sub-nanoseconds and preventing steady laser action8,9. State degeneracy also broadens the photoluminescence linewidth at the single-particle level10. Here we demonstrate a way to decrease the band-edge degeneracy and single-dot photoluminescence linewidth in CQDs by means of uniform biaxial strain. We have developed a synthetic strategy that we term facet-selective epitaxy: we first switch off, and then switch on, shell growth on the (0001) facet of wurtzite CdSe cores, producing asymmetric compressive shells that create built-in biaxial strain, while still maintaining excellent surface passivation (preventing defect formation, which otherwise would cause non-radiative recombination losses). Our synthesis spreads the excitonic fine structure uniformly and sufficiently broadly that it prevents valence-band-edge states from being thermally depopulated. We thereby reduce the optical gain threshold and demonstrate continuous-wave lasing from CQD solids, expanding the library of solution-processed materials11,12 that may be capable of continuous-wave lasing. The individual CQDs exhibit an ultra-narrow single-dot linewidth, and we successfully propagate this into the ensemble of CQDs.

Journal ArticleDOI
TL;DR: This study shows that doping aluminum (Al3+) ion into CsPbBr3 nanocrystals (NCs) using AlBr3 can afford lead‐halide perovskites NCs with stable blue photoluminescence, and suggests that low‐cost, earth‐abundant, solution‐processable Al‐doped perovSKite NCs can be promising candidate materials for blue down‐conversion layer in backlit displays.
Abstract: Bright and stable blue emitters with narrow full-width at half-maxima are particularly desirable for applications in television displays and related technologies. Here, this study shows that doping aluminum (Al3+) ion into CsPbBr3 nanocrystals (NCs) using AlBr3 can afford lead-halide perovskites NCs with stable blue photoluminescence. First, theoretical and experimental analyses reveal that the extended band gap and quantum confinement effect of elongated shape give rise to the desirable blueshifted emission. Second, the aluminum ion incorporation path is rationalized qualitatively by invoking fundamental considerations about binding relations in AlBr3 and its dimer. Finally, the absence of anion-exchange effect is corroborated when green CsPbBr3 and blue Al:CsPbBr3 NCs are mixed. Combinations of the above two NCs with red-emitting CdSe@ZnS NCs result in UV-pumped white light-emitting diodes (LED) with an National Television System Committee (NTSC) value of 116% and ITU-R Recommendation B.T. 2020 (Rec. 2020) of 87%. The color coordinates of the white LED are optimized at (0.32, 0.34) in CIE 1931. The results suggest that low-cost, earth-abundant, solution-processable Al-doped perovskite NCs can be promising candidate materials for blue down-conversion layer in backlit displays.

Journal ArticleDOI
TL;DR: In this article, the photoelectron transferred efficiently from the CB of g-C 3 N 4 to NH 2 -MIL-88B(Fe) for enhanced Fenton-like excitation of H 2 O 2.
Abstract: g-C 3 N 4 /NH 2 -Iron terephthalate metal-organic framework heterojunction for visible light-induced Fenton-like excitation of H 2 O 2 for MB degradation was investigated in this work. The g-C 3 N 4 /NH 2 -MIL-88B(Fe) (namely lp-x composite) was hydrothermally synthesized and characterized by powder X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, UV–vis diffused reflectance spectroscopy, spin-trapping electron paramagnetic resonance and photoluminescence analysis. 100% of MB photodegradation was achieved by the lp-2 in 120 min under visible light, much greater than the parent g-C 3 N 4 and NH 2 -MIL-88B(Fe), individually. The synergistic index in the lp-2/visible-light/H 2 O 2 system reached as high as 305%. The excitation of H 2 O 2 over the lp-2 composite is clarified to go through (i) the direct and (ii) the photo-induced Fenton-like reactions, while the latter is greatly facilitated by the formation of the g-C 3 N 4 /NH 2 -MIL-88B(Fe) heterojunction. In the lp-2 composite, the photoelectron transfers efficiently from the CB of g-C 3 N 4 to NH 2 -MIL-88B(Fe) for enhanced Fenton-like excitation of H 2 O 2 , rather than eliminates through e − -h + pair recombination on g-C 3 N 4 , verified by the photoluminescence analysis and electron spin resonance technique. This work demonstrates the first example of facilitating Fenton-like excitation of H 2 O 2 via introduction of g-C 3 N 4 to stable amine functionalized Fe-centered MOF for visible light-induced photodegradation.

Journal ArticleDOI
22 Jun 2017-ACS Nano
TL;DR: This work demonstrates highly efficient light-emitting diodes (LEDs) based on the colloidal perovskite nanocrystals (NCs) in a dimension > DB (regime beyond quantum size) by using a multifunctional buffer hole injection layer (Buf-HIL).
Abstract: Colloidal metal–halide perovskite quantum dots (QDs) with a dimension less than the exciton Bohr diameter DB (quantum size regime) emerged as promising light emitters due to their spectrally narrow light, facile color tuning, and high photoluminescence quantum efficiency (PLQE). However, their size-sensitive emission wavelength and color purity and low electroluminescence efficiency are still challenging aspects. Here, we demonstrate highly efficient light-emitting diodes (LEDs) based on the colloidal perovskite nanocrystals (NCs) in a dimension > DB (regime beyond quantum size) by using a multifunctional buffer hole injection layer (Buf-HIL). The perovskite NCs with a dimension greater than DB show a size-irrespective high color purity and PLQE by managing the recombination of excitons occurring at surface traps and inside the NCs. The Buf-HIL composed of poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT:PSS) and perfluorinated ionomer induces uniform perovskite particle films with complete ...

Journal ArticleDOI
TL;DR: In this paper, plasmonic Bi metal was inserted as an electron-conduction bridge between g-C3N4 and the surface of Bi2WO6 microspheres to enhance visible light absorption due to the surface Plasmon resonance effect and facilitate efficient electron-carrier separation.
Abstract: A low-cost semiconductor-based photocatalyst using visible light energy has attracted increasing interest for energy generation and environmental remediation. Herein, plasmonic Bi metal was deposited in situ in g-C3N4@Bi2WO6 microspheres via a hydrothermal method. As an electron-conduction bridge, metallic Bi was inserted as the interlayer between g-C3N4 and the surface of Bi2WO6 microspheres to enhance visible light absorption due to the surface plasmon resonance (SPR) effect and facilitate efficient electron-carrier separation. Different characterization techniques, including XRD, SEM, TEM, UV–vis, XPS, photoluminescence, and photocurrent generation, were employed to investigate the morphology and optical properties of the as-prepared samples. The results indicated that the g-C3N4(20%)@Bi@Bi2WO6 microsphere sample exhibited an extraordinary enhanced photocatalytic activity, higher than those of the g-C3N4, Bi2WO6, and g-C3N4(20%)@Bi2WO6 samples. It implies that the heterostructured combination of g-C3N4...

Journal ArticleDOI
TL;DR: In this paper, a simple and efficient solvothermal approach to prepare CsPbX3 nanocrystals with tunable and bright photoluminescent (PL) properties, controllable composition, and morphology is presented.
Abstract: Recently, all-inorganic cesium lead halide (CsPbX3, X = Cl, Br, I) perovskite nanocrystals have drawn much attention because of their outstanding photophysical properties and potential applications. In this work, a simple and efficient solvothermal approach to prepare CsPbX3 nanocrystals with tunable and bright photoluminescent (PL) properties, controllable composition, and morphology is presented. CsPbX3 nanocubes are successfully prepared with bright emission high PL quantum yield up to 80% covering the full visible range and narrow emission line widths (from 12 to 36 nm). More importantly, ultrathin CsPbX3 (X = Cl/Br, Br, and Br/I) nanowires (with diameter as small as ≈2.6 nm) can be prepared in a very high morphological yield (almost 100%). A strong quantum confinement effect is observed in the ultrathin nanowires, in which both the absorption and emission peaks shift to shorter wavelength range compared to their bulk bandgap. The reaction parameters, such as temperature and precursors, are varied to investigate the growth process. A white light-emitting device prototype device with wide color gamut covering up to 120% of the National Television System Committee standard has been demonstrated by using CsPbBr3 nanocrystals as the green light source. The method in this study provides a simple and efficient way to prepare high-quality CsPbX3 nanocrystals.