scispace - formally typeset
Search or ask a question
Topic

Photoluminescence

About: Photoluminescence is a research topic. Over the lifetime, 83414 publications have been published within this topic receiving 1850414 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: It is shown, using photoluminescence studies, that radiative bimolecular recombination is dominant at higher excitation densities, Hence, the quantum efficiencies of the perovskite light-emitting diodes increase at higher current densities.
Abstract: Solid-state light-emitting devices based on direct-bandgap semiconductors have, over the past two decades, been utilized as energy-efficient sources of lighting. However, fabrication of these devices typically relies on expensive high-temperature and high-vacuum processes, rendering them uneconomical for use in large-area displays. Here, we report high-brightness light-emitting diodes based on solution-processed organometal halide perovskites. We demonstrate electroluminescence in the near-infrared, green and red by tuning the halide compositions in the perovskite. In our infrared device, a thin 15 nm layer of CH3NH3PbI(3-x)Cl(x) perovskite emitter is sandwiched between larger-bandgap titanium dioxide (TiO2) and poly(9,9'-dioctylfluorene) (F8) layers, effectively confining electrons and holes in the perovskite layer for radiative recombination. We report an infrared radiance of 13.2 W sr(-1) m(-2) at a current density of 363 mA cm(-2), with highest external and internal quantum efficiencies of 0.76% and 3.4%, respectively. In our green light-emitting device with an ITO/PEDOT:PSS/CH3NH3PbBr3/F8/Ca/Ag structure, we achieved a luminance of 364 cd m(-2) at a current density of 123 mA cm(-2), giving external and internal quantum efficiencies of 0.1% and 0.4%, respectively. We show, using photoluminescence studies, that radiative bimolecular recombination is dominant at higher excitation densities. Hence, the quantum efficiencies of the perovskite light-emitting diodes increase at higher current densities. This demonstration of effective perovskite electroluminescence offers scope for developing this unique class of materials into efficient and colour-tunable light emitters for low-cost display, lighting and optical communication applications.

3,466 citations

Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate very high efficiency electrophosphorescence in organic light-emitting devices employing a phosphorescent molecule doped into a wide energy gap host, achieving a maximum external quantum efficiency of 19.0±1.0 and luminous power efficiency of 60±5 lm/W.
Abstract: We demonstrate very high efficiency electrophosphorescence in organic light-emitting devices employing a phosphorescent molecule doped into a wide energy gap host. Using bis(2-phenylpyridine)iridium(III) acetylacetonate [(ppy)2Ir(acac)] doped into 3-phenyl-4(1′-naphthyl)-5-phenyl-1,2,4-triazole, a maximum external quantum efficiency of (19.0±1.0)% and luminous power efficiency of (60±5) lm/W are achieved. The calculated internal quantum efficiency of (87±7)% is supported by the observed absence of thermally activated nonradiative loss in the photoluminescent efficiency of (ppy)2Ir(acac). Thus, very high external quantum efficiencies are due to the nearly 100% internal phosphorescence efficiency of (ppy)2Ir(acac) coupled with balanced hole and electron injection, and triplet exciton confinement within the light-emitting layer.

3,302 citations

Journal ArticleDOI
TL;DR: The synthesis of epitaxially grown, wurtzite CdSe/CdS core/shell nanocrystals is reported in this paper, where shells of up to three monolayers in thickness were grown on cores ranging in diameter from 23 to 39.
Abstract: The synthesis of epitaxially grown, wurtzite CdSe/CdS core/shell nanocrystals is reported Shells of up to three monolayers in thickness were grown on cores ranging in diameter from 23 to 39 A Shell growth was controllable to within a tenth of a monolayer and was consistently accompanied by a red shift of the absorption spectrum, an increase of the room temperature photoluminescence quantum yield (up to at least 50%), and an increase in the photostability Shell growth was shown to be uniform and epitaxial by the use of X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM), and optical spectroscopy The experimental results indicate that in the excited state the hole is confined to the core and the electron is delocalized throughout the entire structure The photostability can be explained by the confinement of the hole, while the delocalization of the electron results in a degree of electronic accessibility that makes these nanocrystals

2,584 citations

Journal ArticleDOI
13 Oct 2000-Science
TL;DR: In this article, the authors examined the competing dynamical processes involved in optical amplification and lasing in nanocrystal quantum dots and found that, despite a highly efficient intrinsic nonradiative Auger recombination, large optical gain can be developed at the wavelength of the emitting transition for close-packed solids of these dots.
Abstract: The development of optical gain in chemically synthesized semiconductor nanoparticles (nanocrystal quantum dots) has been intensely studied as the first step toward nanocrystal quantum dot lasers. We examined the competing dynamical processes involved in optical amplification and lasing in nanocrystal quantum dots and found that, despite a highly efficient intrinsic nonradiative Auger recombination, large optical gain can be developed at the wavelength of the emitting transition for close-packed solids of these dots. Narrowband stimulated emission with a pronounced gain threshold at wavelengths tunable with the size of the nanocrystal was observed, as expected from quantum confinement effects. These results unambiguously demonstrate the feasibility of nanocrystal quantum dot lasers.

2,535 citations

Journal ArticleDOI
TL;DR: EDS results confirmed a systematic increase of Eu content in the as-prepared samples with the increase of nominal europiumcontent in the reaction solution, and crystallinity and crystallite size of the titania particles decreased gradually.
Abstract: Uniform, spherical-shaped TiO2:Eu nanoparticles with different doping concentrations have been synthesized through controlled hydrolysis of titanium tetrabutoxide under appropriate pH and temperature in the presence of EuCl3·6H2O. Through air annealing at 500°C for 2 h, the amorphous, as-grown nanoparticles could be converted to a pure anatase phase. The morphology, structural, and optical properties of the annealed nanostructures were studied using X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy [EDS], and UV-Visible diffuse reflectance spectroscopy techniques. Optoelectronic behaviors of the nanostructures were studied using micro-Raman and photoluminescence [PL] spectroscopies at room temperature. EDS results confirmed a systematic increase of Eu content in the as-prepared samples with the increase of nominal europium content in the reaction solution. With the increasing dopant concentration, crystallinity and crystallite size of the titania particles decreased gradually. Incorporation of europium in the titania particles induced a structural deformation and a blueshift of their absorption edge. While the room-temperature PL emission of the as-grown samples is dominated by the 5D0 - 7Fj transition of Eu+3 ions, the emission intensity reduced drastically after thermal annealing due to outwards segregation of dopant ions.

2,378 citations


Network Information
Related Topics (5)
Band gap
86.8K papers, 2.2M citations
98% related
Thin film
275.5K papers, 4.5M citations
96% related
Amorphous solid
117K papers, 2.2M citations
94% related
Silicon
196K papers, 3M citations
94% related
Raman spectroscopy
122.6K papers, 2.8M citations
93% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20233,711
20227,608
20213,185
20203,483
20193,557
20183,552