scispace - formally typeset
Search or ask a question
Topic

Photomask

About: Photomask is a research topic. Over the lifetime, 7917 publications have been published within this topic receiving 54524 citations. The topic is also known as: photoreticle & reticle.


Papers
More filters
Proceedings ArticleDOI
18 Dec 1998
TL;DR: In this article, the effective phase in a phase-shifting mask by varying both the relative subtractive etch depth in the quartz (corresponding to the Kirchhoff phase difference) and the etch bias (dual trench depth) was investigated.
Abstract: The advent of mask topography simulation has made possible not only the investigation of the effects of scattering from the mask on the aerial image quality, but also allows a search for mask configurations that produce the desired results. In this work, we first provide studies of the effective phase in a phase-shifting mask by varying both the relative subtractive etch depth in the quartz (corresponding to the Kirchhoff phase difference) and the etch bias (dual trench depth). Ultimately, the sensitivity of the resist linewidth with respect to the effective phase error takes on a critical importance in production, and one may desire to know how to alter a given mask in order to eliminate undesired effects from such errors. A design methodology that takes these issues into account employing a mask topography simulator and a lithography simulator is the end result of this study and is illustrated using an example taken from sub-130 nm lithography.

69 citations

Patent
Yung-Tin Chen1
01 Apr 2004
TL;DR: In this article, a photomask including a first area transmitting light in a first phase surrounded by second area, the second area transmitting lights in a second phase opposite the first phase is presented.
Abstract: Aspects of the present invention provide for a novel photomask for patterning features for an integrated circuit, the photomask including a first area transmitting light in a first phase surrounded by second area, the second area transmitting light in a second phase, the second phase opposite the first phase. No blocking material separates the first area from the second area. After development of photoresist, the transition between the first and second area causes formation of a residual photoresist feature on the photoresist surface due to phase canceling of light. If the first area is small enough, it is nonprinting, ie., the opposite sides of the residual photoresist feature formed at its perimeter merge, forming a contiguous photoresist feature, and thus a corresponding patterned feature after etch.

68 citations

Journal ArticleDOI
TL;DR: This work shows how the inverse lithography problem can be addressed as an obstacle reconstruction problem or an extended nonlinear image restoration problem, and then solved by a level set time-dependent model with finite difference schemes.
Abstract: Inverse lithography technology (ILT) treats photomask design for microlithography as an inverse mathematical problem. We show how the inverse lithography problem can be addressed as an obstacle reconstruction problem or an extended nonlinear image restoration problem, and then solved by a level set time-dependent model with finite difference schemes. We present explicit detailed formulation of the problem together with the first-order temporal and second-order spatial accurate discretization scheme. Experimental results show the superiority of the proposed level set-based ILT over the mainstream gradient methods.

68 citations

Patent
28 Oct 1999
TL;DR: In this paper, a generic topography pattern is formed on the substrate underlying a continuous opaque mask layer which subsequently is patterned with a device-specific array of apertures, and the image projected from a phase-shifting mask comprised of the generic topographical pattern and the device specific aperture pattern is combined with an associated conventional photomask, the photoresist pattern that results corresponds to desired device layers with the imaging advantages of strong phase shifting masks, but without the need for specific patterning of the topography patterns.
Abstract: The fine dark features in the images projected from strong phase-shifting masks used for microdevice lithography are accompanied by 180° shifts in the optical phase, produced by a topography pattern distinct from the pattern of apertures that define the bright features. A generic topography pattern can be formed on the substrate underlying a continuous opaque mask layer which subsequently is patterned with a device-specific array of apertures. When the image projected from a phase-shifting mask comprised of the generic topography pattern and the device-specific aperture pattern is combined with a device-specific image projected from an associated conventional photomask, the photoresist pattern that results corresponds to desired device layers with the imaging advantages of strong phase-shifting masks, but without the need for specific patterning of the topography pattern.

68 citations

Journal ArticleDOI
TL;DR: In this paper, a TiO2-coated photomask was placed on an organic or inorganic substrate to be patterned with a small gap (12.5−100 μm), and irradiated with UV light.
Abstract: Remote oxidation via the gas phase by the TiO2 photocatalyst was exploited for a novel technique for solid surface patterning, photocatalytic lithography. A TiO2-coated photomask was placed on an organic or inorganic substrate to be patterned with a small gap (12.5−100 μm), and irradiated with UV light. Heptadecafluorodecyltrimethoxysilane-, octadecyltriethoxysilane-, and methyltriethoxysilane-coated glass plates, a silicon plate, and a copper plate could be patterned in ≥10 min with resolution of 10 μm or better. Such resolution could be obtained even when the intervening gap between the TiO2 film and the substrate was 100 μm. This may be explained in terms of a double excitation scheme, in which not only TiO2 but also a chemical species diffusing from the TiO2 surface or the substrate to be oxidized is excited by the incident light.

67 citations


Network Information
Related Topics (5)
Silicon
196K papers, 3M citations
82% related
Chemical vapor deposition
69.7K papers, 1.3M citations
81% related
Nanowire
52K papers, 1.5M citations
80% related
Transistor
138K papers, 1.4M citations
80% related
Thin film
275.5K papers, 4.5M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202322
202281
202150
2020124
2019179
2018195