scispace - formally typeset
Search or ask a question
Topic

Photon counting

About: Photon counting is a research topic. Over the lifetime, 8689 publications have been published within this topic receiving 154604 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a review highlights the recent progress which has been made towards improved single-photon detector technologies and the impact these developments will have on quantum optics and quantum information science.
Abstract: This review highlights the recent progress which has been made towards improved single-photon detector technologies and the impact these developments will have on quantum optics and quantum information science.

1,575 citations

Journal ArticleDOI
TL;DR: In this article, a supercurrent-assisted hotspot-formation mechanism for ultrafast detection and counting of visible and infrared photons is presented, where a photon-induced hotspot leads to a temporary formation of a resistive barrier across the superconducting sensor strip and results in an easily measurable voltage pulse.
Abstract: We experimentally demonstrate a supercurrent-assisted, hotspot-formation mechanism for ultrafast detection and counting of visible and infrared photons. A photon-induced hotspot leads to a temporary formation of a resistive barrier across the superconducting sensor strip and results in an easily measurable voltage pulse. Subsequent hotspot healing in ∼30 ps time frame, restores the superconductivity (zero-voltage state), and the detector is ready to register another photon. Our device consists of an ultrathin, very narrow NbN strip, maintained at 4.2 K and current-biased close to the critical current. It exhibits an experimentally measured quantum efficiency of ∼20% for 0.81 μm wavelength photons and negligible dark counts.

1,529 citations

Journal ArticleDOI
12 May 2000
TL;DR: It is shown how to write arbitrary 2D patterns by using the nonclassical photon-number states method, and a factor of N = 2 can be achieved easily with entangled photon pairs generated from optical parametric down-conversion.
Abstract: Summary form only given. It has been known for some time that entangled photon pairs, such as generated by spontaneous parametric down conversion, have unusual imaging characteristics with sub-shot-noise interferometric phase measurement. In fact, Fonseca, et al., recently demonstrated resolution of a two-slit diffraction patterned at half the Rayleigh limit in a coincidence counting experiment. What we show is that this type of effect is possible not only in coincidence counting experiments, but also in real two-photon absorbing systems, such as those used in classical interferometric lithography. In particular, we will demonstrate that quantum entanglement is the resource that allows sub-diffraction limited lithography.

1,255 citations

Journal ArticleDOI
Sergio Cova1, Massimo Ghioni1, A.L. Lacaita1, Carlo Samori1, Franco Zappa1 
TL;DR: Avalanche photodiodes, which operate above the breakdown voltage in Geiger mode connected with avalanche-quenching circuits, can be used to detect single photons and are therefore called singlephoton avalanche diodes SPAD's.
Abstract: Avalanche photodiodes, which operate above the breakdown voltage in Geiger mode connected with avalanche-quenching circuits, can be used to detect single photons and are therefore called singlephoton avalanche diodes SPAD's. Circuit configurations suitable for this operation mode are critically analyzed and their relative merits in photon counting and timing applications are assessed. Simple passive-quenching circuits (PQC's), which are useful for SPAD device testing and selection, have fairly limited application. Suitably designed active-quenching circuits (AQC's) make it possible to exploit the best performance of SPAD's. Thick silicon SPAD's that operate at high voltages (250-450 V) have photon detection efficiency higher than 50% from 540- to 850-nm wavelength and still ~3% at 1064 nm. Thin silicon SPAD's that operate at low voltages (10-50 V) have 45% efficiency at 500 nm, declining to 10% at 830 nm and to as little as 0.1% at 1064 nm. The time resolution achieved in photon timing is 20 ps FWHM with thin SPAD's; it ranges from 350 to 150 ps FWHM with thick SPAD's. The achieved minimum counting dead time and maximum counting rate are 40 ns and 10 Mcps with thick silicon SPAD's, 10 ns and 40 Mcps with thin SPAD's. Germanium and III-V compound semiconductor SPAD's extend the range of photon-counting techniques in the near-infrared region to at least 1600-nm wavelength.

1,175 citations


Network Information
Related Topics (5)
Optical fiber
167K papers, 1.8M citations
87% related
Detector
146.5K papers, 1.3M citations
85% related
Laser
353.1K papers, 4.3M citations
85% related
Spectroscopy
71.3K papers, 1.5M citations
81% related
Beam (structure)
155.7K papers, 1.4M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023193
2022321
2021250
2020337
2019383
2018371