scispace - formally typeset
Search or ask a question
Topic

Photon energy

About: Photon energy is a research topic. Over the lifetime, 10133 publications have been published within this topic receiving 186248 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: It is found that the biexciton effect, which shifts the transition energy for absorption of a second photon, influences the early time transient absorption data and may contribute to a modulation observed when probing near the lowest interband transition.
Abstract: We report ultra-efficient multiple exciton generation (MEG) for single photon absorption in colloidal PbSe and PbS quantum dots (QDs). We employ transient absorption spectroscopy and present measurement data acquired for both intraband as well as interband probe energies. Quantum yields of 300% indicate the creation, on average, of three excitons per absorbed photon for PbSe QDs at photon energies that are four times the QD energy gap. Results indicate that the threshold photon energy for MEG in QDs is twice the lowest exciton absorption energy. We find that the biexciton effect, which shifts the transition energy for absorption of a second photon, influences the early time transient absorption data and may contribute to a modulation observed when probing near the lowest interband transition. We present experimental and theoretical values of the size-dependent interband transition energies for PbSe QDs. We present experimental and theoretical values of the size-dependent interband transition energies for ...

1,605 citations

Journal ArticleDOI
20 Jun 2008-Science
TL;DR: The confinement of the nonlinear interaction of light with matter to a single wave cycle is reported on and its utility for time-resolved and strong-field science is demonstrated.
Abstract: Nonlinear optics plays a central role in the advancement of optical science and laser-based technologies. We report on the confinement of the nonlinear interaction of light with matter to a single wave cycle and demonstrate its utility for time-resolved and strong-field science. The electric field of 3.3-femtosecond, 0.72-micron laser pulses with a controlled and measured waveform ionizes atoms near the crests of the central wave cycle, with ionization being virtually switched off outside this interval. Isolated sub-100-attosecond pulses of extreme ultraviolet light (photon energy {approx} 80 electron volts), containing {approx} 0.5 nanojoule of energy, emerge from the interaction with a conversion efficiency of {approx} 10{sup -6}. These tools enable the study of the precision control of electron motion with light fields and electron-electron interactions with a resolution approaching the atomic unit of time ({approx} 24 attoseconds).

1,330 citations

Journal ArticleDOI
TL;DR: In this paper, an analytical theory of spectral formation in thermal X-ray sources, where the effects of Comptonization and Klein-Nishina corrections are important, is presented, and expressions for the produced spectrum as a function of such input parameters as the plasma temperature, the optical depth of the plasma cloud and the injected soft photon spectrum.
Abstract: The theory of spectral formation in thermal X-ray sources, where the effects of Comptonization and Klein-Nishina corrections are important, is presented. Analytical expressions are obtained for the produced spectrum as a function of such input parameters as the plasma temperature, the optical depth of the plasma cloud and the injected soft photon spectrum. The analytical theory developed here takes into account the dependence of the scattering opacity on the photon energy. It is shown that the plasma temperature as well as the asymptotic rate of photon escape from the plasma cloud determine the shape of the upscattered hard tail in the emergent spectra, even in the case of very small optical depths. The escape distributions of photons are given for any optical depth of the plasma cloud and their asymptotic dependence for very small and large optical depths are examined. It is shown that this new generalized approach can fit spectra for a large variety of hard X-ray sources and determine the plasma temperature in the region of main energy release in Cyg X-1 and the Seyfert galaxy NGC 4151.

963 citations

Journal ArticleDOI
TL;DR: In this article, a general experimental method to determine the energy ECT of intermolecular charge transfer (CT) states in electron donor-acceptor (D-A) blends from ground state absorption and electrochemical measurements is proposed.
Abstract: Here, a general experimental method to determine the energy ECT of intermolecular charge-transfer (CT) states in electron donor–acceptor (D–A) blends from ground state absorption and electrochemical measurements is proposed. This CT energy is calibrated against the photon energy of maximum CT luminescence from selected D–A blends to correct for a constant Coulombic term. It is shown that ECT correlates linearly with the open-circuit voltage (Voc) of photovoltaic devices in D–A blends via eVoc = ECT − 0.5 eV. Using the CT energy, it is found that photoinduced electron transfer (PET) from the lowest singlet excited state (S1 with energy Eg) in the blend to the CT state (S1 → CT) occurs when Eg − ECT > 0.1 eV. Additionally, it is shown that subsequent charge recombination from the CT state to the lowest triplet excited state (ET) of D or A (CT → T1) can occur when ECT − ET > 0.1 eV. From these relations, it is concluded that in D–A blends optimized for photovoltaic action: i) the maximum attainable Voc is ultimately set by the optical band gap (eVoc = Eg − 0.6 eV) and ii) the singlet–triplet energy gap should be ΔEST < 0.2 eV to prevent recombination to the triplet state. These favorable conditions have not yet been met in conjugated materials and set the stage for further developments in this area.

926 citations

Journal ArticleDOI
07 Aug 2015-Science
TL;DR: A pathway is proposed, called the plasmon-induced interfacial charge-transfer transition (PICTT), that enables the decay of a plAsmon by directly exciting an electron from the metal to a strongly coupled acceptor.
Abstract: Plasmon-induced hot-electron transfer from metal nanostructures is a potential new paradigm for solar energy conversion; however, the reported efficiencies of devices based on this concept are often low because of the loss of hot electrons via ultrafast electron-electron scattering. We propose a pathway, called the plasmon-induced interfacial charge-transfer transition (PICTT), that enables the decay of a plasmon by directly exciting an electron from the metal to a strongly coupled acceptor. We demonstrated this concept in cadmium selenide nanorods with gold tips, in which the gold plasmon was strongly damped by cadmium selenide through interfacial electron transfer. The quantum efficiency of the PICTT process was high (>24%), independent of excitation photon energy over a ~1-electron volt range, and dependent on the excitation polarization.

885 citations


Network Information
Related Topics (5)
Electron
111.1K papers, 2.1M citations
91% related
Scattering
152.3K papers, 3M citations
87% related
Excited state
102.2K papers, 2.2M citations
86% related
Magnetic field
167.5K papers, 2.3M citations
85% related
Monte Carlo method
95.9K papers, 2.1M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202365
2022139
2021205
2020254
2019308
2018259