scispace - formally typeset
Search or ask a question
Topic

Photonic crystal

About: Photonic crystal is a research topic. Over the lifetime, 43424 publications have been published within this topic receiving 887083 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that truncated rhombic dodecahedral particles of the metal-organic framework (MOF) ZIF-8 can self-assemble into millimetre-sized superstructures with an underlying three-dimensional rhombohedral lattice that behave as photonic crystals.
Abstract: Self-assembly of particles into long-range, three-dimensional, ordered superstructures is crucial for the design of a variety of materials, including plasmonic sensing materials, energy or gas storage systems, catalysts and photonic crystals. Here, we have combined experimental and simulation data to show that truncated rhombic dodecahedral particles of the metal-organic framework (MOF) ZIF-8 can self-assemble into millimetre-sized superstructures with an underlying three-dimensional rhombohedral lattice that behave as photonic crystals. Those superstructures feature a photonic bandgap that can be tuned by controlling the size of the ZIF-8 particles and is also responsive to the adsorption of guest substances in the micropores of the ZIF-8 particles. In addition, superstructures with different lattices can also be assembled by tuning the truncation of ZIF-8 particles, or by using octahedral UiO-66 MOF particles instead. These well-ordered, sub-micrometre-sized superstructures might ultimately facilitate the design of three-dimensional photonic materials for applications in sensing.

244 citations

Journal ArticleDOI
27 Apr 2006-Nature
TL;DR: It is demonstrated that light launched at different quasicrystal sites travels through the lattice in a way equivalent to quantum tunnelling of electrons in a quasiperiodic potential, and at high intensity, lattice solitons are formed.
Abstract: A photonic equivalent of a quasicrystal is created in which wave and defect dynamics can be made visible — for example, it is shown that a dislocation introduced in the photonic quasicrystal is healed by re-arrangements of the lattice. Quasicrystals are unique structures with long-range order but no periodicity. Their properties have intrigued scientists ever since their discovery1 and initial theoretical analysis2,3. The lack of periodicity excludes the possibility of describing quasicrystal structures with well-established analytical tools, including common notions like Brillouin zones and Bloch's theorem. New and unique features such as fractal-like band structures4,5,6,7 and ‘phason’ degrees of freedom8 are introduced. In general, it is very difficult to directly observe the evolution of electronic waves in solid-state atomic quasicrystals, or the dynamics of the structure itself. Here we use optical induction9,10,11 to create two-dimensional photonic quasicrystals, whose macroscopic nature allows us to explore wave transport phenomena. We demonstrate that light launched at different quasicrystal sites travels through the lattice in a way equivalent to quantum tunnelling of electrons in a quasiperiodic potential. At high intensity, lattice solitons are formed. Finally, we directly observe dislocation dynamics when crystal sites are allowed to interact with each other. Our experimental results apply not only to photonics, but also to other quasiperiodic systems such as matter waves in quasiperiodic traps12, generic pattern-forming systems as in parametrically excited surface waves13, liquid quasicrystals14, and the more familiar atomic quasicrystals.

244 citations

Journal ArticleDOI
TL;DR: An analytical and computationally guided design involving high-purity tungsten in a precisely fabricated photonic crystal slab geometry optimized for high performance and robustness in the presence of roughness, fabrication errors, and surface diffusion is reported.
Abstract: The nascent field of high-temperature nanophotonics could potentially enable many important solid-state energy conversion applications, such as thermophotovoltaic energy generation, selective solar absorption, and selective emission of light. However, special challenges arise when trying to design nanophotonic materials with precisely tailored optical properties that can operate at high-temperatures (> 1,100 K). These include proper material selection and purity to prevent melting, evaporation, or chemical reactions; severe minimization of any material interfaces to prevent thermomechanical problems such as delamination; robust performance in the presence of surface diffusion; and long-range geometric precision over large areas with severe minimization of very small feature sizes to maintain structural stability. Here we report an approach for high-temperature nanophotonics that surmounts all of these difficulties. It consists of an analytical and computationally guided design involving high-purity tungsten in a precisely fabricated photonic crystal slab geometry (specifically chosen to eliminate interfaces arising from layer-by-layer fabrication) optimized for high performance and robustness in the presence of roughness, fabrication errors, and surface diffusion. It offers near-ultimate short-wavelength emittance and low, ultra-broadband long-wavelength emittance, along with a sharp cutoff offering 4∶1 emittance contrast over 10% wavelength separation. This is achieved via Q-matching, whereby the absorptive and radiative rates of the photonic crystal’s cavity resonances are matched. Strong angular emission selectivity is also observed, with short-wavelength emission suppressed by 50% at 75° compared to normal incidence. Finally, a precise high-temperature measurement technique is developed to confirm that emission at 1,225 K can be primarily confined to wavelengths shorter than the cutoff wavelength.

243 citations

Journal ArticleDOI
11 May 2001-Science
TL;DR: A blueprint for a three-dimensional photonic band gap material that is amenable to large-scale microfabrication on the optical scale using glancing angle deposition methods and is very robust to variations in the geometrical parameters of the crystal.
Abstract: We present a blueprint for a three-dimensional photonic band gap (PBG) material that is amenable to large-scale microfabrication on the optical scale using glancing angle deposition methods. The proposed chiral crystal consists of square spiral posts on a tetragonal lattice. In the case of silicon posts in air (direct structure), the full PBG can be as large as 15% of the gap center frequency, whereas for air posts in a silicon background (inverted structure) the maximum PBG is 24% of the center frequency. This PBG occurs between the fourth and fifth bands of the photon dispersion relation and is very robust to variations (disorder) in the geometrical parameters of the crystal.

243 citations

Journal ArticleDOI
TL;DR: This work designs, fabricates, and characterize a photonic crystal possessing single Weyl points (including type-II nodes) and multiple Weyl Points with topological charges of 2 and 3, and finds nontrivial 2D bulk band gaps for a fixed kz and the associated surface modes.
Abstract: Weyl points, as monopoles of Berry curvature in momentum space, have captured much attention recently in various branches of physics. Realizing topological materials that exhibit such nodal points is challenging and indeed, Weyl points have been found experimentally in transition metal arsenide and phosphide and gyroid photonic crystal whose structure is complex. If realizing even the simplest type of single Weyl nodes with a topological charge of 1 is difficult, then making a real crystal carrying higher topological charges may seem more challenging. Here we design, and fabricate using planar fabrication technology, a photonic crystal possessing single Weyl points (including type-II nodes) and multiple Weyl points with topological charges of 2 and 3. We characterize this photonic crystal and find nontrivial 2D bulk band gaps for a fixed kz and the associated surface modes. The robustness of these surface states against kz-preserving scattering is experimentally observed for the first time.

242 citations


Network Information
Related Topics (5)
Optical fiber
167K papers, 1.8M citations
92% related
Quantum dot
76.7K papers, 1.9M citations
91% related
Band gap
86.8K papers, 2.2M citations
89% related
Laser
353.1K papers, 4.3M citations
89% related
Photoluminescence
83.4K papers, 1.8M citations
88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023748
20221,590
20211,207
20201,455
20191,643
20181,683