scispace - formally typeset
Search or ask a question
Topic

Photonic crystal

About: Photonic crystal is a research topic. Over the lifetime, 43424 publications have been published within this topic receiving 887083 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, low-loss high dielectric-constant materials are analyzed in the terahertz frequency range using time-domain spectroscopy, including steatite, alumina, titania loaded polystyrene, and zirconium-tin-titanate.
Abstract: Low-loss high dielectric-constant materials are analyzed in the terahertz frequency range using time-domain spectroscopy. The dielectric constant and loss tangent for steatite, alumina, titania loaded polystyrene, and zirconium-tin-titanate are presented and compared to measurements on high-resistivity silicon. For these materials, the real part of the dielectric constant ranges from 6 to 90. All of the samples were found to have reasonable low-loss tangents. Applications as photonic crystal substrates for terahertz frequency antenna are envisaged.

193 citations

Journal ArticleDOI
TL;DR: A simple and efficient optical interference method for fabricating high quality two- and three-dimensional (2D and 3D) periodic structures is demonstrated and the experimental results obtained with SU-8 photoresist are well in agreement with the theoretical predictions.
Abstract: A simple and efficient optical interference method for fabricating high quality two- and three-dimensional (2D and 3D) periodic structures is demonstrated. Employing multi-exposure of two-beam interference technique, different types of periodic structures are created depending on the number of exposure and the rotation angle of the sample for each exposure. Square and hexagonal 2D structures are fabricated by a multi-exposure of two-beam interference pattern with a rotation angle of 90 masculine and 60 masculine between two different exposures, respectively. Three-exposure, in particular, results in different kinds of 3D structures, with close lattice constants in transverse and longitudinal directions, which is difficult to be obtained by the commonly used multi-beam interference technique. The experimental results obtained with SU-8 photoresist are well in agreement with the theoretical predictions. Multi-exposure of two-beam interference technique should be very useful for fabrication of photonic crystals.

193 citations

Journal ArticleDOI
TL;DR: The presented system can extend applications of CLCs to a wide-band region and could give rise to new photonic devices, in which white or multicolour light is manipulated.
Abstract: A cholesteric liquid crystal (CLC) is a self-assembled photonic crystal formed by rodlike molecules, including chiral molecules, that arrange themselves in a helical fashion. The CLC has a single photonic bandgap and an associated one-colour reflection band for circularly polarized light with the same handedness as the CLC helix (selective reflection). These optical characteristics, particularly the circular polarization of the reflected light, are attractive for applications in reflective colour displays without using a backlight, for use as polarizers or colour filters and for mirrorless lasing. Recently, we showed by numerical simulation that simultaneous multicolour reflection is possible by introducing fibonaccian phase defects. Here, we design and fabricate a CLC system consisting of thin isotropic films and of polymeric CLC films, and demonstrate experimentally simultaneous red, green and blue reflections (multiple photonic bandgaps) using the single-pitched polymeric CLC films. The experimental reflection spectra are well simulated by calculations. The presented system can extend applications of CLCs to a wide-band region and could give rise to new photonic devices, in which white or multicolour light is manipulated.

193 citations

Journal ArticleDOI
TL;DR: Dynamic control of a band gap can be used to coherently convert a propagating light pulse into a stationary excitation with nonvanishing photonic component with high efficiency and negligible noise even at the level of few-photon quantum fields thereby facilitating possible applications in quantum nonlinear optics and quantum information.
Abstract: When a resonance associated with electromagnetically induced transparency in an atomic ensemble is modulated by an off-resonant standing light wave, a band of frequencies can appear for which light propagation is forbidden. We show that dynamic control of such a band gap can be used to coherently convert a propagating light pulse into a stationary excitation with nonvanishing photonic component. This can be accomplished with high efficiency and negligible noise even at the level of few-photon quantum fields thereby facilitating possible applications in quantum nonlinear optics and quantum information.

193 citations

Journal ArticleDOI
TL;DR: In this paper, an ultracompact all-optical photonic crystal AND gate based on nonlinear ring resonators was proposed, which can operate with a bit rate of about 120 Gbits/s.
Abstract: We have proposed an ultracompact all-optical photonic crystal AND gate based on nonlinear ring resonators, consisting of two Kerr nonlinear photonic crystal ring resonators inserted between three parallel line defects. We have employed a Si nanocrystal as the nonlinear material for its appropriate nonlinear properties. The gate has been simulated and analyzed by finite difference time domain and plane wave expansion methods. The proposed logic gate can operate with a bit rate of about 120 Gbits/s.

193 citations


Network Information
Related Topics (5)
Optical fiber
167K papers, 1.8M citations
92% related
Quantum dot
76.7K papers, 1.9M citations
91% related
Band gap
86.8K papers, 2.2M citations
89% related
Laser
353.1K papers, 4.3M citations
89% related
Photoluminescence
83.4K papers, 1.8M citations
88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023748
20221,590
20211,207
20201,455
20191,643
20181,683