scispace - formally typeset
Search or ask a question
Topic

Photonic crystal

About: Photonic crystal is a research topic. Over the lifetime, 43424 publications have been published within this topic receiving 887083 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a carbon nanotube is used as an optical near-field probe and applied to visualize the plasmon fields of metal nanostructures in both amplitude and phase at 30 nm resolution.
Abstract: We introduce a carbon nanotube as optical near-field probe and apply it to visualize the plasmon fields of metal nanostructures in both amplitude and phase at 30 nm resolution. With 91 nm Au disks designed for fundamental plasmon resonance, we observe the antiphase optical fields near two pole regions that are evidence of dipolar oscillation, in good agreement with theoretical field patterns. This opens the door to phase-sensitively map optical propagation and storage in photonic crystals and nanooptic resonators or circuits, in particular to verify coherent control of plasmon polaritons.

155 citations

Journal ArticleDOI
TL;DR: In this paper, the fabrication and characteristics of planar microcavities in a log-pile photonic crystal structure formed using light-induced photopolymerization of resin were reported.
Abstract: We report the fabrication and characteristics of planar microcavities in a log-pile photonic crystal structure formed using light-induced photopolymerization of resin. A planar defect was introduced into the middle of the log-pile structure as a single layer with every second rod missing. The existence of confined cavity states was confirmed experimentally and by numeric simulations. The cavity resonance found at the midgap wavelength λM∼4.0 μm had a quality factor of about 130.

154 citations

Journal Article
TL;DR: In this article, the authors demonstrate a strong interface between single quantum emitters and topological photonic states and demonstrate the chiral emission of a quantum emitter into these modes and establish their robustness against sharp bends.
Abstract: The application of topology in optics has led to a new paradigm in developing photonic devices with robust properties against disorder Although considerable progress on topological phenomena has been achieved in the classical domain, the realization of strong light-matter coupling in the quantum domain remains unexplored We demonstrate a strong interface between single quantum emitters and topological photonic states Our approach creates robust counterpropagating edge states at the boundary of two distinct topological photonic crystals We demonstrate the chiral emission of a quantum emitter into these modes and establish their robustness against sharp bends This approach may enable the development of quantum optics devices with built-in protection, with potential applications in quantum simulation and sensing

154 citations

Journal ArticleDOI
TL;DR: It is experimentally and theoretically clarified that a Fano resonant system based on a coupled optical cavity has better performance when used as an all-optical switch than a single cavity in terms of switching energy, contrast, and operation bandwidth.
Abstract: We experimentally and theoretically clarified that a Fano resonant system based on a coupled optical cavity has better performance when used as an all-optical switch than a single cavity in terms of switching energy, contrast, and operation bandwidth. We successfully fabricated a Fano system consisting of doubly coupled photonic-crystal (PhC) nanocavities, and demonstrated all-optical switching for the first time. A steep asymmetric transmission spectrum was clearly observed, thereby enabling a low-energy and high-contrast switching operation. We achieved the switching with a pump energy of a few fJ, a contrast of more than 10 dB, and an 18 ps switching time window. These levels of performance are actually better than those for Lorentzian resonance in a single cavity. We also theoretically investigated the achievable performance in a well-designed Fano system, which suggested a high contrast for the switching of more than 20 dB in a fJ energy regime.

154 citations

Journal ArticleDOI
TL;DR: In this paper, the authors studied the valley degree of freedom in all dielectric silicon photonic graphene and revisited the gap opening physics under inversion symmetry breaking by the viewpoint of nonzero valley Chern number.
Abstract: In this paper, we study valley degree of freedom in all dielectric silicon photonic graphene. Photonic band gap opening physics under inversion symmetry breaking is revisited by the viewpoint of nonzero valley Chern number. Bulk valley modes with opposite orbital angular momentum are unveiled by inspecting time-varying electric fields. Topological transition is well illustrated through photonic Dirac Hamiltonian. Valley dependent edge states and the associated valley-protected backscattering suppression around Z-shape bend waveguide have been demonstrated.

154 citations


Network Information
Related Topics (5)
Optical fiber
167K papers, 1.8M citations
92% related
Quantum dot
76.7K papers, 1.9M citations
91% related
Band gap
86.8K papers, 2.2M citations
89% related
Laser
353.1K papers, 4.3M citations
89% related
Photoluminescence
83.4K papers, 1.8M citations
88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023748
20221,590
20211,207
20201,455
20191,643
20181,683