scispace - formally typeset
Search or ask a question
Topic

Photonic crystal

About: Photonic crystal is a research topic. Over the lifetime, 43424 publications have been published within this topic receiving 887083 citations.


Papers
More filters
Journal ArticleDOI
16 Nov 2007-Science
TL;DR: Generation and guidance of a three-octave spectral comb, spanning wavelengths from 325 to 2300 nanometers, in a hydrogen-filled hollow-core photonic crystal fiber, is demonstrated, opening up a robust and much simplified route to synthesizing attosecond pulses.
Abstract: Ultrabroad coherent comb-like optical spectra spanning several octaves are a chief ingredient in the emerging field of attoscience. We demonstrate generation and guidance of a three-octave spectral comb, spanning wavelengths from 325 to 2300 nanometers, in a hydrogen-filled hollow-core photonic crystal fiber. The waveguidance results not from a photonic band gap but from the inhibited coupling between the core and cladding modes. The spectrum consists of up to 45 high-order Stokes and anti-Stokes lines and is generated by driving the confined gas with a single, moderately powerful (10-kilowatt) infrared laser, producing 12-nanosecond-duration pulses. This represents a reduction by six orders of magnitude in the required laser powers over previous equivalent techniques and opens up a robust and much simplified route to synthesizing attosecond pulses.

505 citations

Journal ArticleDOI
TL;DR: Layered heterostructures combining ordinary and negative refractive index materials are shown to display a new type of photonic band gap corresponding to zero (volume) averaged refractiveIndex, distinct from band gaps induced by Bragg scattering.
Abstract: Layered heterostructures combining ordinary and negative refractive index materials are shown to display a new type of photonic band gap corresponding to zero (volume) averaged refractive index. Distinct from band gaps induced by Bragg scattering, the zero-$\overline{n}$ gap is invariant upon a change of scale length and is insensitive to disorder that is symmetric in the random variable. A metallic structure that exhibits such a band gap is explicitly designed, and its properties are calculated with accurate finite difference time domain simulations.

505 citations

Journal ArticleDOI
24 Mar 2005-Nature
TL;DR: All-fibre gas cells based on gas-filled hollow-core photonic crystal fibres are reported, which exhibit high performance, excellent long-term pressure stability and ease of use, and could permit gas-phase laser devices incorporated in a ‘credit card’ or even in a laser pointer.
Abstract: Gas-phase materials are used in a variety of laser-based applications--for example, in high-precision frequency measurement, quantum optics and nonlinear optics Their full potential has however not been realized because of the lack of a suitable technology for creating gas cells that can guide light over long lengths in a single transverse mode while still offering a high level of integration in a practical and compact set-up or device As a result, solid-phase materials are still often favoured, even when their performance compares unfavourably with gas-phase systems Here we report the development of all-fibre gas cells that meet these challenges Our structures are based on gas-filled hollow-core photonic crystal fibres, in which we have recently demonstrated substantially enhanced stimulated Raman scattering, and which exhibit high performance, excellent long-term pressure stability and ease of use To illustrate the practical potential of these structures, we report two different devices: a hydrogen-filled cell for efficient generation of rotational Raman scattering using only quasi-continuous-wave laser pulses; and acetylene-filled cells, which we use for absolute frequency-locking of diode lasers with very high signal-to-noise ratios The stable performance of these compact gas-phase devices could permit, for example, gas-phase laser devices incorporated in a 'credit card' or even in a laser pointer

505 citations

Journal ArticleDOI
TL;DR: A photonic nanocavity with a high Q factor of 100,000 and a modal volume V of 0.71 cubic wavelengths, is demonstrated and a point-defect cavity in a two-dimensional (2D) photonic crystal (PC) slab is improved where the arrangement of six air holes near the cavity edges is fine-tuned.
Abstract: A photonic nanocavity with a high Q factor of 100,000 and a modal volume V of 0.71 cubic wavelengths, is demonstrated. According to the cavity design rule that we discovered recently, we further improve a point-defect cavity in a two-dimensional (2D) photonic crystal (PC) slab, where the arrangement of six air holes near the cavity edges is fine-tuned. We demonstrate that the measured Q factor for the designed cavity increases by a factor of 20 relative to that for a cavity without displaced air holes, while the calculated modal volume remains almost constant.

504 citations

Journal ArticleDOI
TL;DR: In this article, the optical properties of polycrystalline inverse opals were modified in predictable manners by numerous methods, including tailoring the pore size, filling the pores with fluids of various refractive indices, and changing the compositions of the solid material.
Abstract: Colloidal crystal-templating methods have been used to prepare inverse opal photonic crystals of silica, mercaptopropyl-functionalized silica, titania, and zirconia. Ordered arrays of uniformly sized polymer spheres were infiltrated with fluid precursors capable of condensation or crystallization. After solidification of the material in the void spaces between the spheres, the polymer templates were removed by calcination or solvent extraction, leaving inverse replicas of the template arrays. By carefully controlling the synthetic procedures, gram-scale quantities of powdered macroporous materials exhibiting photonic crystal properties were obtained. For materials with crystalline walls (titania and zirconia), this required minimization of the size of the nanocrystalline grains. Because the periodicity introduced into the wall structure by the colloidal crystal templates was on the order of optical wavelengths, Bragg diffractions from the planes produced photonic stop bands in the visible spectra of these materials. The stop bands were manifested as brightly colored reflections and an optical filtering behavior of the materials. A crystallographic indexing of the optical spectrum of a polycrystalline inverse opal confirmed the fcc ordering of the pores. The optical properties of these materials were modified in predictable manners by numerous methods, including tailoring the pore size, filling the pores with fluids of various refractive indices, and changing the compositions of the solid material. The wavelengths of the colorful reflections (stop bands) were found to be proportional to the pore size and to vary linearly with the refractive index of the fluid filling the pores. The physical and synthetic modifications reported here allowed for the preparation of powders with optical reflections and bright colors spanning the entire visible spectrum.

492 citations


Network Information
Related Topics (5)
Optical fiber
167K papers, 1.8M citations
92% related
Quantum dot
76.7K papers, 1.9M citations
91% related
Band gap
86.8K papers, 2.2M citations
89% related
Laser
353.1K papers, 4.3M citations
89% related
Photoluminescence
83.4K papers, 1.8M citations
88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023748
20221,590
20211,207
20201,455
20191,643
20181,683