scispace - formally typeset
Search or ask a question
Topic

Photonic crystal

About: Photonic crystal is a research topic. Over the lifetime, 43424 publications have been published within this topic receiving 887083 citations.


Papers
More filters
Journal ArticleDOI
02 Mar 2000-Nature
TL;DR: This work describes a technique—three-dimensional holographic lithography—that is well suited to the production of three-dimensional structures with sub-micrometre periodicity, and has made microperiodic polymeric structures, and used these as templates to create complementary structures with higher refractive-index contrast.
Abstract: The term 'photonics' describes a technology whereby data transmission and processing occurs largely or entirely by means of photons. Photonic crystals are microstructured materials in which the dielectric constant is periodically modulated on a length scale comparable to the desired wavelength of operation. Multiple interference between waves scattered from each unit cell of the structure may open a 'photonic bandgap'--a range of frequencies, analogous to the electronic bandgap of a semiconductor, within which no propagating electromagnetic modes exist. Numerous device principles that exploit this property have been identified. Considerable progress has now been made in constructing two-dimensional structures using conventional lithography, but the fabrication of three-dimensional photonic crystal structures for the visible spectrum remains a considerable challenge. Here we describe a technique--three-dimensional holographic lithography--that is well suited to the production of three-dimensional structures with sub-micrometre periodicity. With this technique we have made microperiodic polymeric structures, and we have used these as templates to create complementary structures with higher refractive-index contrast.

1,737 citations

Journal ArticleDOI
14 Aug 2003-Nature
TL;DR: An astonishing variety of natural photonic structures exists: a species of Brittlestar uses photonic elements composed of calcite to collect light, Morpho butterflies use multiple layers of cuticle and air to produce their striking blue colour and some insects use arrays of elements to reduce reflectivity in their compound eyes.
Abstract: Millions of years before we began to manipulate the flow of light using synthetic structures, biological systems were using nanometre-scale architectures to produce striking optical effects. An astonishing variety of natural photonic structures exists: a species of Brittlestar uses photonic elements composed of calcite to collect light, Morpho butterflies use multiple layers of cuticle and air to produce their striking blue colour and some insects use arrays of elements, known as nipple arrays, to reduce reflectivity in their compound eyes. Natural photonic structures are providing inspiration for technological applications.

1,698 citations

Book
27 Jun 2001

1,673 citations

Journal ArticleDOI
TL;DR: The relations for the dispersion and the group velocity of the photonic band of the CROW's are obtained and it is found that they are solely characterized by coupling factor k(1) .
Abstract: We propose a new type of optical waveguide that consists of a sequence of coupled high- Q resonators. Unlike other types of optical waveguide, waveguiding in the coupled-resonator optical waveguide (CROW) is achieved through weak coupling between otherwise localized high- Q optical cavities. Employing a formalism similar to the tight-binding method in solid-state physics, we obtain the relations for the dispersion and the group velocity of the photonic band of the CROW's and find that they are solely characterized by coupling factor k 1 . We also demonstrate the possibility of highly efficient nonlinear optical frequency conversion and perfect transmission through bends in CROW's.

1,671 citations

Journal ArticleDOI
15 Nov 2001-Nature
TL;DR: By assembling a thin layer of colloidal spheres on a silicon substrate, this work can obtain planar, single-crystalline silicon photonic crystals that have defect densities sufficiently low that the bandgap survives.
Abstract: Photonic bandgap crystals can reflect light for any direction of propagation in specific wavelength ranges1,2,3. This property, which can be used to confine, manipulate and guide photons, should allow the creation of all-optical integrated circuits. To achieve this goal, conventional semiconductor nanofabrication techniques have been adapted to make photonic crystals4,5,6,7,8,9. A potentially simpler and cheaper approach for creating three-dimensional periodic structures is the natural assembly of colloidal microspheres10,11,12,13,14,15. However, this approach yields irregular, polycrystalline photonic crystals that are difficult to incorporate into a device. More importantly, it leads to many structural defects that can destroy the photonic bandgap16,17. Here we show that by assembling a thin layer of colloidal spheres on a silicon substrate, we can obtain planar, single-crystalline silicon photonic crystals that have defect densities sufficiently low that the bandgap survives. As expected from theory, we observe unity reflectance in two crystalline directions of our photonic crystals around a wavelength of 1.3 micrometres. We also show that additional fabrication steps, intentional doping and patterning, can be performed, so demonstrating the potential for specific device applications.

1,649 citations


Network Information
Related Topics (5)
Optical fiber
167K papers, 1.8M citations
92% related
Quantum dot
76.7K papers, 1.9M citations
91% related
Band gap
86.8K papers, 2.2M citations
89% related
Laser
353.1K papers, 4.3M citations
89% related
Photoluminescence
83.4K papers, 1.8M citations
88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023748
20221,590
20211,207
20201,455
20191,643
20181,683