scispace - formally typeset
Search or ask a question
Topic

Photonic crystal

About: Photonic crystal is a research topic. Over the lifetime, 43424 publications have been published within this topic receiving 887083 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Time-resolved spontaneous emission measurements of single quantum dots embedded in photonic crystal waveguides are presented, and an unprecedented large bandwidth of 20 nm is demonstrated, showing the promising potential of photonic crystals waveguide for efficient single-photon sources.
Abstract: We present time-resolved spontaneous emission measurements of single quantum dots embedded in photonic crystal waveguides. Quantum dots that couple to a photonic crystal waveguide are found to decay up to 27 times faster than uncoupled quantum dots. From these measurements beta-factors of up to 0.89 are derived, and an unprecedented large bandwidth of 20 nm is demonstrated. This shows the promising potential of photonic crystal waveguides for efficient single-photon sources. The scaled frequency range over which the enhancement is observed is in excellent agreement with recent theoretical proposals taking into account that the light-matter coupling is strongly enhanced due to the significant slow-down of light in the photonic crystal waveguides.

348 citations

Journal ArticleDOI
TL;DR: An air-clad large-core single-transverse-mode ytterbium-doped photonic crystal fiber with a mode-field-diameter of 35 microm allowing for the frequency up-conversion of these pulses using narrow-bandwidth phase matched nonlinear crystals.
Abstract: We report on an air-clad large-core single-transverse-mode ytterbium-doped photonic crystal fiber with a mode-field-diameter of 35 µm, corresponding to a mode-field-area of ~1000 µm2. In a first experiment this fiber is used to amplify 10-ps pulses to a peak power of 60 kW without significant spectral broadening due to self-phase modulation allowing for the frequency up-conversion of these pulses using narrow-bandwidth phase-matched nonlinear crystals.

347 citations

Journal ArticleDOI
TL;DR: Numerical predictions for the quality factors and mode volumes of localized defect modes as a function of geometric parameters are presented and some experimental challenges related to the coupling of a defect cavity to gas-phase atoms are discussed.
Abstract: We discuss the optimization of optical microcavity designs based on two-dimensional photonic crystals for the purpose of strong coupling between the cavity field and a single neutral atom trapped within a hole. We present numerical predictions for the quality factors and mode volumes of localized defect modes as a function of geometric parameters, and discuss some experimental challenges related to the coupling of a defect cavity to gas-phase atoms.

347 citations

Journal ArticleDOI
TL;DR: In this article, the authors outline a new direction in the area of photonic crystals (PCs), or photonic band gap materials, i.e. one-, two-, or three-dimensional superstructures with periods that are comparable with the wavelengths of electromagnetic radiation.
Abstract: In this paper we outline a new direction in the area of photonic crystals (PCs), or photonic band gap materials, i.e. one-, two-, or three-dimensional superstructures with periods that are comparable with the wavelengths of electromagnetic radiation. The main (and principal) characteristic of this new class of PCs is the presence of magnetically ordered components (or external magnetic field). The linear and nonlinear optical properties of such magnetic PCs are discussed.

346 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review both theoretical and experimental advances in the recently emerged physics of modulated photonic lattices, and show that the light propagation in periodic photonic structures resembles the motion of electrons in a crystalline lattice of semiconductor materials.
Abstract: We review both theoretical and experimental advances in the recently emerged physics of modulated photonic lattices. Artificial periodic dielectric media, such as photonic crystals and photonic lattices, provide a powerful tool for the control of the fundamental properties of light propagation in photonic structures. Photonic lattices are arrays of coupled optical waveguides, where the light propagation becomes effectively discretized. Such photonic structures allow one to study many useful optical analogies with other fields, such as the physics of solid state and electron theory. In particular, the light propagation in periodic photonic structures resembles the motion of electrons in a crystalline lattice of semiconductor materials. The discretized nature of light propagation gives rise to many new phenomena which are not possible in homogeneous bulk media, such as discrete diffraction and diffraction management, discrete and gap solitons, and discrete surface waves. Recently, it was discovered that applying periodic modulation to a photonic lattice by varying its geometry or refractive index is very much similar to applying a bias to control the motion of electrons in a crystalline lattice. An interplay between periodicity and modulation in photonic lattices opens up unique opportunities for tailoring diffraction and dispersion properties of light as well as controlling nonlinear interactions.

345 citations


Network Information
Related Topics (5)
Optical fiber
167K papers, 1.8M citations
92% related
Quantum dot
76.7K papers, 1.9M citations
91% related
Band gap
86.8K papers, 2.2M citations
89% related
Laser
353.1K papers, 4.3M citations
89% related
Photoluminescence
83.4K papers, 1.8M citations
88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023748
20221,590
20211,207
20201,455
20191,643
20181,683