scispace - formally typeset
Search or ask a question
Topic

Photonic crystal

About: Photonic crystal is a research topic. Over the lifetime, 43424 publications have been published within this topic receiving 887083 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the photonic band gap structures, those three-dimensional periodic dielectric structures that are to photon waves as semiconductor crystals are to electron waves, are discussed.
Abstract: The analogy between electromagnetic wave propagation in multidimensionally periodic structures and electron-wave propagation in real crystals has proven to be a fruitful one. Initial efforts were motivated by the prospect of a photonic band gap. a frequency band in three-dimensional dielectric structures in which electromagnetic waves are forbidden irrespective of the propagation direction in space. Today many new ideas and applications are being pursued in two and three dimensions and in metallic, dielectric, and acoustic structures. We review the early motivations for this research, which were derived from the need for a photonic band gap in quantum optics. This need led to a series of experimental and theoretical searches for the elusive photonic band-gap structures, those three-dimensionally periodic dielectric structures that are to photon waves as semiconductor crystals are to electron waves. We describe how the photonic semiconductor can be doped, producing tiny electromagnetic cavities. Finally, we summarize some of the anticipated implications of photonic band structure for quantum electronics and for other areas of physics and electrical engineering.

1,352 citations

Journal ArticleDOI
TL;DR: A practical, new, face-centered-cubic dielectric structure which simultaneously solves two of the outstanding problems in photonic band structure and lends itself readily to microfabrication on the scale of optical wavelengths.
Abstract: We introduce a practical, new, face-centered-cubic dielectric structure which simultaneously solves two of the outstanding problems in photonic band structure. In this new ``photonic crystal'' the atoms are nonspherical, lifting the degeneracy at the W point of the Brillouin zone, and permitting a full photonic band gap rather than a pseudogap. Furthermore, this fully three-dimensional fcc structure lends itself readily to microfabrication on the scale of optical wavelengths. It is created by simply drilling three sets of holes 35.26\ifmmode^\circ\else\textdegree\fi{} off vertical into the top surface of a solid slab or wafer, as can be done, for example, by chemical-beam-assisted ion etching.

1,342 citations

Journal ArticleDOI
TL;DR: In this article, the authors demonstrate that light propagation in strongly modulated two-dimensional (2D)/3D photonic crystals becomes refractionlike in the vicinity of the photonic bandgap.
Abstract: Although light propagation in weakly modulated photonic crystals is basically similar to propagation in a diffraction grating in which conventional refractive index loses its meaning, we demonstrate that light propagation in strongly modulated two-dimensional (2D)/3D photonic crystals becomes refractionlike in the vicinity of the photonic bandgap. Such a crystal behaves as a material having an effective refractive index controllable by the band structure. This situation is analogous to the effective-mass approximation in electron-band theory. By utilizing this phenomenon, negatively refractive material can be realized, which has interesting optical properties such as mirror-image refraction.

1,310 citations

Journal ArticleDOI
03 Nov 2005-Nature
TL;DR: An over 300-fold reduction of the group velocity on a silicon chip via an ultra-compact photonic integrated circuit using low-loss silicon photonic crystal waveguides that can support an optical mode with a submicrometre cross-section is experimentally demonstrated.
Abstract: It is known that light can be slowed down in dispersive materials near resonances. Dramatic reduction of the light group velocity-and even bringing light pulses to a complete halt-has been demonstrated recently in various atomic and solid state systems, where the material absorption is cancelled via quantum optical coherent effects. Exploitation of slow light phenomena has potential for applications ranging from all-optical storage to all-optical switching. Existing schemes, however, are restricted to the narrow frequency range of the material resonance, which limits the operation frequency, maximum data rate and storage capacity. Moreover, the implementation of external lasers, low pressures and/or low temperatures prevents miniaturization and hinders practical applications. Here we experimentally demonstrate an over 300-fold reduction of the group velocity on a silicon chip via an ultra-compact photonic integrated circuit using low-loss silicon photonic crystal waveguides that can support an optical mode with a submicrometre cross-section. In addition, we show fast (approximately 100 ns) and efficient (2 mW electric power) active control of the group velocity by localized heating of the photonic crystal waveguide with an integrated micro-heater.

1,307 citations

Book
04 Sep 2008

1,296 citations


Network Information
Related Topics (5)
Optical fiber
167K papers, 1.8M citations
92% related
Quantum dot
76.7K papers, 1.9M citations
91% related
Band gap
86.8K papers, 2.2M citations
89% related
Laser
353.1K papers, 4.3M citations
89% related
Photoluminescence
83.4K papers, 1.8M citations
88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023748
20221,590
20211,207
20201,455
20191,643
20181,683