scispace - formally typeset
Search or ask a question

Showing papers on "Photonic-crystal fiber published in 2008"


PatentDOI
08 Jul 2008-Nature
TL;DR: In this article, a two-step process is described to generate a micrometer sized diameter silica preform fiber, and then the preform is drawn while coupled to a support element to form a nanometer sized diameter fiber.
Abstract: The present invention provides nanometer-sized diameter silica fibers that exhibit high diameter uniformity and surface smoothness. The silica fibers can have diameters in a range of a about 20 nm to about 1000 nm. An exemplary method according to one embodiment of the invention for generating such fibers utilizes a two-step process in which in an initial step a micrometer sized diameter silica preform fiber is generated, and in a second step, the silica preform is drawn while coupled to a support element to form a nanometer sized diameter silica fiber. The portion of the support element to which the preform is coupled is maintained at a temperature suitable for drawing the nansized fiber, and is preferably controlled to exhibit a temporally stable temperature profile.

1,357 citations


Journal ArticleDOI
TL;DR: Broad bandwidth, mid-IR supercontinuum generation using a sub-cm (8 mm) length of highly nonlinear tellurite microstructured photonic crystal fiber, comparable or in excess of previously reported spectra for other nonlinear glass fiber formulations despite the significantly shorter fiber length is reported.
Abstract: We report broad bandwidth, mid-IR supercontinuum generation using a sub-cm (8 mm) length of highly nonlinear tellurite microstructured photonic crystal fiber (PCF). We pump the fiber at telecommunication wavelengths by using 1550 nm, 100 fs pulses of energy E=1.9 nJ. When coupled in the PCF, these pulses result in a supercontinuum (SC) bandwidth of 4080 nm extending from 789 to 4870 nm measured at 20 dBm below the peak spectral power. This bandwidth is comparable or in excess of previously reported spectra for other nonlinear glass fiber formulations despite the significantly shorter fiber length. In addition, besides offering a convenient pump wavelength, short fiber lengths enable smoother SC spectra, lower dispersion, and reduced material absorption at longer wavelengths making the use of this PCF particularly interesting.

443 citations


Journal ArticleDOI
TL;DR: The miniaturized fiber inline Fabry-Perot interferometer, with an open micro-notch cavity fabricated by one-step fs laser micromachining, is reported for highly sensitive refractive index measurement.
Abstract: We report a miniaturized fiber inline Fabry-Perot interferometer (FPI), with an open micro-notch cavity fabricated by one-step fs laser micromachining, for highly sensitive refractive index measurement. The device was tested for measurement of the refractive indices of various liquids including isopropanol, acetone and methanol at room temperature, as well as the temperature-dependent refractive index of deionized water from 3 to 90 degrees C. The sensitivity for measurement of refractive index change of water was 1163 nm/RIU at the wavelength of 1550 nm. The temperature cross-sensitivity of the device was about 1.1x10(-6) RIU/degrees C. The small size, all-fiber structure, small temperature dependence, linear response and high sensitivity, make the device attractive for chemical and biological sensing.

395 citations


Journal ArticleDOI
TL;DR: Two designs of effectively single mode porous polymer fibers for low-loss guiding of terahertz radiation are proposed and suggested porous fibers outperform considerably the rod-in-the-air fiber designs.
Abstract: We propose two designs of effectively single mode porous polymer fibers for low-loss guiding of terahertz radiation. First, we present a fiber of several wavelengths in diameter containing an array of sub-wavelength holes separated by sub-wavelength material veins. Second, we detail a large diameter hollow core photonic bandgap Bragg fiber made of solid film layers suspended in air by a network of circular bridges. Numerical simulations of radiation, absorption and bending losses are presented; strategies for the experimental realization of both fibers are suggested. Emphasis is put on the optimization of the fiber geometries to increase the fraction of power guided in the air inside of the fiber, thereby alleviating the effects of material absorption and interaction with the environment. Total fiber loss of less than 10 dB/m, bending radii as tight as 3 cm, and fiber bandwidth of ~1 THz is predicted for the porous fibers with sub-wavelength holes. Performance of this fiber type is also compared to that of the equivalent sub-wavelength rod-in-the-air fiber with a conclusion that suggested porous fibers outperform considerably the rod-in-the-air fiber designs. For the porous Bragg fibers total loss of less than 5 dB/m, bending radii as tight as 12 cm, and fiber bandwidth of ~0.1 THz are predicted. Coupling to the surface states of a multilayer reflector facilitated by the material bridges is determined as primary mechanism responsible for the reduction of the bandwidth of a porous Bragg fiber. In all the simulations, polymer fiber material is assumed to be Teflon with bulk absorption loss of 130 dB/m.

369 citations


Journal ArticleDOI
TL;DR: A miniature Fabry-Perot (FP) interferometric fiber-optic sensor suitable for high-temperature sensing is proposed and demonstrated and shows that the thermal-optics effect of the cavity material is much more appreciable than its thermal expansion.
Abstract: A miniature Fabry-Perot (FP) interferometric fiber-optic sensor suitable for high-temperature sensing is proposed and demonstrated. The sensor head consists of two FP cavities formed by fusion splicing a short hollow-core fiber and a piece of single-mode fiber at a photonic crystal fiber in series. The reflection spectra of an implemented sensor are measured at several temperatures and analyzed in the spatial frequency domain. The experiment shows that the thermal-optic effect of the cavity material is much more appreciable than its thermal expansion. The temperature measurements up to 1000 degrees C with a step of 50 degrees C confirm that it could be applicable as a high-temperature sensor.

340 citations


Journal ArticleDOI
TL;DR: A Fabry-Perot (F-P) optical fiber tip sensor for high-resolution refractive-index measurement fabricated by using 157-nm laser micromachining, for the first time to the authors' knowledge, is proposed and demonstrated.
Abstract: We propose and demonstrate a Fabry-Perot (F-P) optical fiber tip sensor for high-resolution refractive-index measurement fabricated by using 157-nm laser micromachining, for the first time to our knowledge. The sensor head consists of a short air F-P cavity near the tip of a single-mode fiber and the fiber tip. The external refractive index is determined according to the maximum fringe contrast of the interference fringes in the reflective spectrum of the sensor. Such a sensor can provide temperature-independent measurement of practically any refractive index larger than that of air and offers a refractive-index resolution of ~4 x 10(-5) in its linear operating range. The experimental data agree well with the theoretical results.

326 citations


Journal ArticleDOI
TL;DR: It is demonstrated that rogue wave generation can be enhanced by an order of magnitude through a small modulation across the input pulse envelope and effectively suppressed through the use of a sliding frequency filter.
Abstract: We present a numerical study of the evolution dynamics of “optical rogue waves”, statistically-rare extreme red-shifted soliton pulses arising from supercontinuum generation in photonic crystal fiber [D. R. Solli et al. Nature 450, 1054–1058 (2007)]. Our specific aim is to use nonlinear Schrodinger equation simulations to identify ways in which the rogue wave dynamics can be actively controlled, and we demonstrate that rogue wave generation can be enhanced by an order of magnitude through a small modulation across the input pulse envelope and effectively suppressed through the use of a sliding frequency filter.

296 citations


Journal ArticleDOI
TL;DR: High nonlinearity in a highly nonlinear arsenic selenide chalcogenide nanowire with tailored dispersion enables low-threshold soliton fission leading to large spectral broadening at a dramatically reduced peak power of several watts, corresponding to picojoule energy.
Abstract: We demonstrate low-threshold supercontinuum generated in a highly nonlinear arsenic selenide chalcogenide nanowire with tailored dispersion. The tapered submicrometer chalcogenide fiber exhibits an ultrahigh nonlinearity, n2~1.1×10−17m2/W and an effective mode area of 0.48 μm2, yielding an effective nonlinearity of γ~93.4W/m, which is over 80,000 times larger than standard silica single-mode fiber at a wavelength of ~1550nm. This high nonlinearity, in conjunction with the engineered anomalous dispersion, enables low-threshold soliton fission leading to large spectral broadening at a dramatically reduced peak power of several watts, corresponding to picojoule energy.

289 citations


Journal ArticleDOI
TL;DR: A novel intrinsic fiber optic pressure sensor realized with a polarization-maintaining photonic crystal fiber (PM-PCF) based Sagnac interferometer is proposed and demonstrated experimentally.
Abstract: A novel intrinsic fiber optic pressure sensor realized with a polarization-maintaining photonic crystal fiber (PM-PCF) based Sagnac interferometer is proposed and demonstrated experimentally. A large wavelength-pressure coefficient of 3.42 nm/MPa was measured using a 58.4 cm long PM-PCF as the sensing element. Owing to the inherently low bending loss and thermal dependence of the PM-PCF, the proposed pressure sensor is very compact and exhibits low temperature sensitivity.

287 citations


Journal ArticleDOI
TL;DR: A small, lightweight two-photon fiberscope is presented and functional imaging of calcium signals in Purkinje cell dendrites in the cerebellum of anesthetized rats is demonstrated.
Abstract: We present a small, lightweight two-photon fiberscope and demonstrate its suitability for functional imaging in the intact brain. Our device consists of a hollow-core photonic crystal fiber for efficient delivery of near-IR femtosecond laser pulses, a spiral fiber-scanner for resonant beam steering, and a gradient-index lens system for fluorescence excitation, dichroic beam splitting, and signal collection. Fluorescence light is remotely detected using a standard photomultiplier tube. All optical components have 1 mm dimensions and the microscope’s headpiece weighs only 0.6 grams. The instrument achieves micrometer resolution at frame rates of typically 25 Hz with a field-of-view of up to 200 microns. We demonstrate functional imaging of calcium signals in Purkinje cell dendrites in the cerebellum of anesthetized rats. The microscope will be easily portable by a rat or mouse and thus should enable functional imaging in freely behaving animals.

282 citations


Journal ArticleDOI
TL;DR: Initial experimental details and properties of a silicon core, silica glass-clad optical fiber fabricated using conventional optical fiber draw methods showed the core to be highly crystalline silicon.
Abstract: Described herein are initial experimental details and properties of a silicon core, silica glass-clad optical fiber fabricated using conventional optical fiber draw methods. Such semiconductor core fibers have potential to greatly influence the fields of nonlinear fiber optics, infrared and THz power delivery. More specifically, x-ray diffraction and Raman spectroscopy showed the core to be highly crystalline silicon. The measured propagation losses were 4.3 dB/m at 2.936 µm, which likely are caused by either microcracks in the core arising from the large thermal expansion mismatch with the cladding or to SiO2 precipitates formed from oxygen dissolved in the silicon melt. Suggestions for enhancing the performance of these semiconductor core fibers are provided. Here we show that lengths of an optical fiber containing a highly crystalline semiconducting core can be produced using scalable fiber fabrication techniques.

Journal ArticleDOI
TL;DR: A review of optical fiber sensing demonstrations based on photonic crystal fibers is presented in this paper, which is orga- nized in five main sections: the first three deal with sensing approaches relying on fiber Bragg gratings, long-period gratings and interferometric structures; the fourth one reports applica- tions of these fibers for gas and liquid sensing; the last section focuses on the exploitation of nonlinear effects in pho- tonic crystal fibers for sensing.
Abstract: A review of optical fiber sensing demonstrations based on photonic crystal fibers is presented. The text is orga- nized in five main sections: the first three deal with sensing approaches relying on fiber Bragg gratings, long-period gratings and interferometric structures; the fourth one reports applica- tions of these fibers for gas and liquid sensing; finally, the last section focuses on the exploitation of nonlinear effects in pho- tonic crystal fibers for sensing. A brief review about splicing with photonic crystal fibers is also included.

Patent
12 Mar 2008
TL;DR: In this article, the optical fiber is physically associated with an object and the strain on at least a portion of the fiber where it is associated with the object is determined by an OFDR using one or more Rayleigh scatter patterns.
Abstract: A fiber optic position and/or shape sensing device includes an optical fiber with either two or more single core optical fibers or a multi-core optical fiber having two or more fiber cores. In either case, the fiber cores are spaced apart so that mode coupling between the fiber cores is reduced, and preferably, minimized. The optical fiber is physically associated with an object. Strain on at least a portion of the optical fiber where it is associated with the object is determined by an OFDR using one or more Rayleigh scatter patterns for that portion of the optical fiber. The determined strain is used to determine a position and/or a shape of the object.

Journal ArticleDOI
TL;DR: Numerical results indicate that the optical loss of the Gaussian guided mode can be made very small by tuning the thickness of the dielectric layer and that the refractive-index resolution for aqueous analytes is 1x 10(-4).
Abstract: We propose a novel surface-plasmon-resonance sensor design based on coating the holes of a three-hole microstructured optical fiber with a low-index dielectric layer on top of which a gold layer is deposited. The use of all three fiber holes and their relatively large size should facilitate the fabrication of the inclusions and the infiltration of the analyte. Our numerical results indicate that the optical loss of the Gaussian guided mode can be made very small by tuning the thickness of the dielectric layer and that the refractive-index resolution for aqueous analytes is 1×10-4.

Journal ArticleDOI
TL;DR: High sensitivity refractometers based on a long-period grating in a large-mode-area photonic crystal fiber (PCF) with maximum sensitivity is 1500 nm/refractive index unit at a refractive index of 1.33, to date the highest reported for any fiber grating.
Abstract: We present highly sensitive refractometers based on a long-period grating in a large-mode-area photonic crystal fiber (PCF). The maximum sensitivity is 1500 nm/refractive index unit at a refractive index of 1.33, to our knowledge the highest reported for any fiber grating. The minimal detectable index change is 2 x 10(-5). The high sensitivity is obtained by infiltrating the sample into the holes of the PCF to give a strong interaction between the sample and the probing field.

Journal ArticleDOI
TL;DR: In this article, the authors present experimental results on coupling to surface plasmon modes on gold nanowires selectively introduced into polarization-maintaining photonic crystal fibers, which can be potentially used as in-fiber wavelength-dependent filters and polarizers and as near-field tips for sub-wavelength-scale imaging.
Abstract: We present experimental results on coupling to surface plasmon modes on gold nanowires selectively introduced into polarization-maintaining photonic crystal fibers. Highly polarization- and wavelength-dependent transmission is observed. In one sample 24.5 mm long, the transmission on and off resonance differs by as much as 45 dB. Near-field optical images of the light emerging from such a gold-filled fiber show light guided on the wire at surface plasmon resonances. Finite element simulations are in good agreement with the experimental results. These gold-filled fibers can be potentially used as in-fiber wavelength-dependent filters and polarizers and as near-field tips for sub-wavelength-scale imaging.

Journal ArticleDOI
TL;DR: In this article, the temporal and spectral impact of optical wave-breaking in the development of a continuum was investigated, and the impact of linear losses or gain on the evolution of a pulse propagating in a normally dispersive fiber in the presence of Kerr nonlinearity.
Abstract: We study the evolution of a pulse propagating in a normally dispersive fiber in the presence of Kerr nonlinearity. We review the temporal and spectral impact of optical wave-breaking in the development of a continuum. The impact of linear losses or gain is also investigated.

Journal ArticleDOI
TL;DR: This work demonstrates continuous wave supercontinuum generation extending to the visible spectral region by pumping photonic crystal fibers at 1.07 microm with a 400 W single mode, continuous wave, ytterbium fiber laser.
Abstract: We demonstrate continuous wave supercontinuum generation extending to the visible spectral region by pumping photonic crystal fibers at 1.07 microm with a 400 W single mode, continuous wave, ytterbium fiber laser. The continuum spans over 1300 nm with average powers up to 50 W and spectral power densities over 50 mW/nm. Numerical modeling and understanding of the physical mechanisms has led us to identify the dominant contribution to the short wavelength extension to be trapping and scattering of dispersive waves by high energy solitons.

Journal ArticleDOI
TL;DR: In this article, visibly white supercontinuum generation in photonic crystal fibers using a sub ns pump source at 1064 nm was reported, and the spectra extend from below 400 nm to 2450 nm, some 50 nm further into the blue than previously reported spectra.
Abstract: We report on visibly white supercontinuum generation in photonic crystal fibers using a sub ns pump source at 1064 nm. The spectra extend from below 400 nm to 2450 nm, some 50 nm further into the blue than previously reported spectra. The extra bandwidth which is achieved by a simple modification to the fiber structure gives a higher apparent color temperature and a truly "white" visual appearance. The mechanism for the generation of the deeper blue to ultraviolet frequencies is outlined and our modified fiber is compared with fibers which have been conventionally used for supercontinuum generation.

Journal ArticleDOI
TL;DR: This work proposes a novel class of optical fiber with a porous transverse cross-section that is created by arranging sub-wavelength air-holes within the core of the fiber to offer a combination of low transmission loss and high mode confinement in the THz regime.
Abstract: We propose a novel class of optical fiber with a porous transverse cross-section that is created by arranging sub-wavelength air-holes within the core of the fiber. These fibers can offer a combination of low transmission loss and high mode confinement in the THz regime by exploiting the enhancement of the guided mode field that occurs within these sub-wavelength holes. We evaluate the properties of these porous fibers and quantitatively compare their performance relative to that of a solid core air cladded fiber (microwire). For similar loss values, porous fibers enable improved light confinement and reduced distortion of a broadband pulse compared to microwires.

Journal ArticleDOI
TL;DR: The MNF-assembled MZIs demonstrated here show advantages of easy fabrication, in situ tunability, and compact size.
Abstract: We demonstrate Mach-Zehnder interferometers (MZI) assembled using optical microfibers or nanofibers (MNFs) drawn from silica fibers and tellurite glasses. As-assembled MZIs, with dimensions of tens to hundreds of micrometers, show good interference fringes with extinction ratios of approximately 10 dB. The path-length difference of the MZI can be tuned by micromanipulation under an optical microscope. The MNF-assembled MZIs demonstrated here show advantages of easy fabrication, in situ tunability, and compact size.

Patent
17 Jan 2008
TL;DR: Multi-cladding optical fibers to be used in the context of fiber amplifiers and fiber lasers are described in this article, where a rare earth doped core is surrounded by multiple claddings that guide the pump field to be absorbed by the reactive core material.
Abstract: Multi-cladding optical fibers to be used in the context of fiber amplifiers and fiber lasers are described herein. Embodiments of optical fibers include a rare-earth doped core into which the signal field is to be amplified. The doped core is surrounded by multiple claddings that guide the pump field to be absorbed by the reactive core material. The first cladding has a depressed refractive index to improve high-order mode bending losses without incurring significant fundamental mode bending losses.

Journal ArticleDOI
TL;DR: A subwavelength-diameter tapered optical fiber coated with gelatin layer for fast relative humidity (RH) sensing is reported, which is one or two orders of magnitude faster than other types of RH sensors relying on conventional optical fibers or films.
Abstract: A subwavelength-diameter tapered optical fiber coated with gelatin layer for fast relative humidity (RH) sensing is reported. The sensing element is composed of a 680-nm-diameter fiber taper coated with a 80-nm-thickness 8-mm-length gelatin layer, and is operated at a wavelength of 1550 nm. When exposed to moisture, the change in refractive index of the gelatin layer changes the mode field of the guided mode of the coated fiber, and converts a portion of power from guided mode to radiation mode, resulting in RH-dependent loss for optical sensing. The sensor is operated within a wide humidity range (9–94% RH) with high sensitivity and good reversibility. Measured response time is about 70 ms, which is one or two orders of magnitude faster than other types of RH sensors relying on conventional optical fibers or films.

Journal ArticleDOI
TL;DR: This paper reports on an 80 microm core diameter ytterbium-doped rod-type photonic crystal fiber laser emitting up to 94 W in continuous wave regime when operating at 977 nm, which is to the authors' knowledge the highest output power ever achieved from a single-mode solid-state laser operating at this wavelength.
Abstract: In this paper, we investigate power scalability of ytterbium-doped ultra large core photonic crystal fiber laser operating on the zero-line transition. We first report on an 80 microm core diameter ytterbium-doped rod-type photonic crystal fiber laser emitting up to 94 W in continuous wave regime when operating at 977 nm, which is to our knowledge the highest output power ever achieved from a single-mode solid-state laser operating at this wavelength. Key parameters of ytterbium-doped three-level laser, such as transparency pump intensity, pump absorption saturation, and gain competition between three and four-level laser operation are then discussed in the particular context of high power fiber laser operating at 977 nm.

Journal ArticleDOI
TL;DR: In this paper, the authors presented a fiber-optic refractive index sensor which is based on an intrinsic Fabry-Perot interferometer (IFPI) formed by a section of singlemode photonic crystal fiber and conventional single-mode fiber.
Abstract: This paper, for the first time to the best of our knowledge, presents a novel fiber-optic refractive-index sensor which is based on an intrinsic Fabry-Perot interferometer (IFPI) formed by a section of endlessly single-mode photonic crystal fiber (EPCF) and conventional single-mode fiber. Such an IFPI sensor has the advantages of easy fabrication, low joint and transmission losses, low-cost and good fringe visibility due to the use of the EPCF. This miniature fiber-optic sensor is demonstrated for the measurement of the refractive index change of glycerin solution by measuring its fringe visibility change solely. The experimental data agree well with the theoretical results and the refractive-index resolution and repeatability of ∼2 × 10−5 and ±0.5%FS in the linear operating range, are achieved. In addition, such a sensor can be used as an excellent temperature sensor with a cavity-length-temperature sensitivity of 4.16 nm/°C and repeatability of ±0.15%FS when tested from 20 °C to 100 °C. Therefore, simultaneous measurement of refractive index and temperature can be realized by determination of the fringe visibility and the cavity length change of such a PCF-based IFPI, respectively, providing a practical way to measure refractive index with self-temperature compensation.

Journal ArticleDOI
TL;DR: This work reports on the generation of 94 W continuous wave output power at 980 nm using an Yb-doped fiber laser, which is to the best of the knowledge the highest output power close to diffraction-limited beam quality achieved in this wavelength range from fibers so far.
Abstract: We report on the generation of 94 W continuous wave output power at 980 nm using an Yb-doped fiber laser This is achieved using an ultra large-mode-area rod-type photonic crystal fiber pumped at 915 nm To the best of our knowledge this is the highest output power close to diffraction-limited beam quality (M2 about 22) achieved in this wavelength range from fibers so far The experimental results are supported by detailed numerical simulations that provide a deeper understanding of the laser process, in particular the competition with the 1030 nm emission

Journal ArticleDOI
TL;DR: In this article, the sensitivity of fiber grating sensors in the applications of strain, temperature, internal label-free biosensing, and internal refractive index sensing was rigorously derived. But the sensitivity was not investigated in the case of photonic crystal fibers.
Abstract: We study the sensitivity of fiber grating sensors in the applications of strain, temperature, internal label-free biosensing, and internal refractive index sensing. New analytical expressions for the sensitivities, valid for photonic crystal fibers are rigorously derived. These are generally valid, and we identify a previously unaccounted term for temperature and strain sensing. It is shown that dispersion plays a central role in determining the sensitivity, and that dispersion may enhance or suppress sensitivity as well as change the sign of the resonant wavelength shifts. We propose a quality factor, Q, for characterizing long period gratings sensors.

Journal ArticleDOI
TL;DR: A 29 W CW supercontinuum spanning from 1.06 to 1.67 microm is generated in a short length of PCF with two zero dispersion wavelengths, which enables the continuum to expand beyond the water loss at 1.4 microm.
Abstract: A 29 W CW supercontinuum spanning from 1.06 to 1.67 µm is generated in a short length of PCF with two zero dispersion wavelengths. The continuum has the highest spectral power density, greater than 50 mW/nm up to 1.4 µm, reported to date. The use of a short length of PCF enables the continuum to expand beyond the water loss at 1.4 µm. The dynamics of the continuum evolution are studied experimentally and numerically with close attention given to the effects of the water loss and the second zero dispersion wavelength.

Journal ArticleDOI
TL;DR: In this paper, a compact in reflection modal interferometer consisting of a stub of large-mode area photonic crystal fiber (PCF) spliced to standard fiber is presented.
Abstract: A compact in reflection modal interferometer consisting of a stub of large-mode area photonic crystal fiber (PCF) spliced to standard fiber is presented. In the splice, the voids of the PCF are fully collapsed allowing so coupling and recombining PCF core and cladding modes. The interferometer is highly stable over time and can be used for different applications. The measuring of refractive index in the 1.33–1.45 range with high sensitivity is demonstrated. Sensing applications based on refractive index changes are also feasible.

Journal ArticleDOI
TL;DR: A novel way to efficiently generate broadband cascaded Four-Wave Mixing products by launching two strong pump waves near the zero-dispersion wavelength of a very short optical fiber is proposed.
Abstract: We propose a novel way to efficiently generate broadband cascaded Four-Wave Mixing (FWM) products. It consists of launching two strong pump waves near the zero-dispersion wavelength of a very short (of order a few meters) optical fiber. Simulations based on Split Step Fourier Method (SSFM) and experimental data demonstrate the efficiency of our new approach. Multiple FWM products have been investigated by using conventional fibers and ultra-flattened dispersion photonic crystal fibers (UFD-PCFs). Measured results present bandwidths of 300 nm with up to 118 FWM products. We have also demonstrated a flat bandwidth of 110 nm covering the C and L bands, with a small variation of only 1.2 dB between the powers of FWM products, has been achieved using highly nonlinear fibers (HNLFs). The use of UFD-PCFs has been shown interesting for improving the multiple FWM efficiency and reducing the separation between the pump wavelengths.