scispace - formally typeset


About: Photonics is a(n) research topic. Over the lifetime, 37918 publication(s) have been published within this topic receiving 797995 citation(s). The topic is also known as: optics and photonics.
More filters

03 Jul 1995-
Abstract: Since it was first published in 1995, Photonic Crystals has remained the definitive text for both undergraduates and researchers on photonic band-gap materials and their use in controlling the propagation of light. This newly expanded and revised edition covers the latest developments in the field, providing the most up-to-date, concise, and comprehensive book available on these novel materials and their applications. Starting from Maxwell's equations and Fourier analysis, the authors develop the theoretical tools of photonics using principles of linear algebra and symmetry, emphasizing analogies with traditional solid-state physics and quantum theory. They then investigate the unique phenomena that take place within photonic crystals at defect sites and surfaces, from one to three dimensions. This new edition includes entirely new chapters describing important hybrid structures that use band gaps or periodicity only in some directions: periodic waveguides, photonic-crystal slabs, and photonic-crystal fibers. The authors demonstrate how the capabilities of photonic crystals to localize light can be put to work in devices such as filters and splitters. A new appendix provides an overview of computational methods for electromagnetism. Existing chapters have been considerably updated and expanded to include many new three-dimensional photonic crystals, an extensive tutorial on device design using temporal coupled-mode theory, discussions of diffraction and refraction at crystal interfaces, and more. Richly illustrated and accessibly written, Photonic Crystals is an indispensable resource for students and researchers.Extensively revised and expanded Features improved graphics throughout Includes new chapters on photonic-crystal fibers and combined index-and band-gap-guiding Provides an introduction to coupled-mode theory as a powerful tool for device design Covers many new topics, including omnidirectional reflection, anomalous refraction and diffraction, computational photonics, and much more.

7,976 citations

Journal ArticleDOI
12 Feb 1998-Nature
Abstract: The desire to use and control photons in a manner analogous to the control of electrons in solids has inspired great interest in such topics as the localization of light, microcavity quantum electrodynamics and near-field optics1,2,3,4,5,6. A fundamental constraint in manipulating light is the extremely low transmittivity of apertures smaller than the wavelength of the incident photon. While exploring the optical properties of submicrometre cylindrical cavities in metallic films, we have found that arrays of such holes display highly unusual zero-order transmission spectra (where the incident and detected light are collinear) at wavelengths larger than the array period, beyond which no diffraction occurs. In particular, sharp peaks in transmission are observed at wavelengths as large as ten times the diameter of the cylinders. At these maxima the transmission efficiency can exceed unity (when normalized to the area of the holes), which is orders of magnitude greater than predicted by standard aperture theory. Our experiments provide evidence that these unusual optical properties are due to the coupling of light with plasmons — electronic excitations — on the surface of the periodically patterned metal film. Measurements of transmission as a function of the incident light angle result in a photonic band diagram. These findings may find application in novel photonic devices.

7,135 citations

Journal ArticleDOI
01 Sep 2010-Nature Photonics
Abstract: The richness of optical and electronic properties of graphene attracts enormous interest. Graphene has high mobility and optical transparency, in addition to flexibility, robustness and environmental stability. So far, the main focus has been on fundamental physics and electronic devices. However, we believe its true potential lies in photonics and optoelectronics, where the combination of its unique optical and electronic properties can be fully exploited, even in the absence of a bandgap, and the linear dispersion of the Dirac electrons enables ultrawideband tunability. The rise of graphene in photonics and optoelectronics is shown by several recent results, ranging from solar cells and light-emitting devices to touch screens, photodetectors and ultrafast lasers. Here we review the state-of-the-art in this emerging field.

6,298 citations

15 Aug 1991-
Abstract: Fundamentals of Photonics A complete, thoroughly updated, full-color third edition Fundamentals of Photonics, Third Edition is a self-contained and up-to-date introductory-level textbook that thoroughly surveys this rapidly expanding area of engineering and applied physics. Featuring a blend of theory and applications, coverage includes detailed accounts of the primary theories of light, including ray optics, wave optics, electromagnetic optics, and photon optics, as well as the interaction of light and matter. Presented at increasing levels of complexity, preliminary sections build toward more advanced topics, such as Fourier optics and holography, photonic-crystal optics, guided-wave and fiber optics, LEDs and lasers, acousto-optic and electro-optic devices, nonlinear optical devices, ultrafast optics, optical interconnects and switches, and optical fiber communications. The third edition features an entirely new chapter on the optics of metals and plasmonic devices. Each chapter contains highlighted equations, exercises, problems, summaries, and selected reading lists. Examples of real systems are included to emphasize the concepts governing applications of current interest. Each of the twenty-four chapters of the second edition has been thoroughly updated.

4,988 citations

Journal ArticleDOI
Ekmel Ozbay1
13 Jan 2006-Science
TL;DR: The current status and future prospects of plAsmonics in various applications including plasmonic chips, light generation, and nanolithography are reviewed.
Abstract: Electronic circuits provide us with the ability to control the transport and storage of electrons. However, the performance of electronic circuits is now becoming rather limited when digital information needs to be sent from one point to another. Photonics offers an effective solution to this problem by implementing optical communication systems based on optical fibers and photonic circuits. Unfortunately, the micrometer-scale bulky components of photonics have limited the integration of these components into electronic chips, which are now measured in nanometers. Surface plasmon-based circuits, which merge electronics and photonics at the nanoscale, may offer a solution to this size-compatibility problem. Here we review the current status and future prospects of plasmonics in various applications including plasmonic chips, light generation, and nanolithography.

4,106 citations

Network Information
Related Topics (5)
Photonic crystal

43.4K papers, 887K citations

97% related

6.7K papers, 241.1K citations

96% related
Nonlinear optics

21.6K papers, 517.4K citations

96% related
Whispering-gallery wave

4.3K papers, 83.6K citations

96% related
Surface plasmon

23K papers, 690.9K citations

95% related
No. of papers in the topic in previous years

Top Attributes

Show by:

Topic's top 5 most impactful authors

John E. Bowers

192 papers, 6.7K citations

Benjamin J. Eggleton

134 papers, 4.2K citations

Laurent Vivien

119 papers, 1.8K citations

Roel Baets

112 papers, 6.7K citations

Wolfram H. P. Pernice

98 papers, 5.2K citations