scispace - formally typeset
Search or ask a question

Showing papers on "Photosynthesis published in 2007"


Journal ArticleDOI
TL;DR: Improved understanding of the molecular and biochemical mechanisms by which plants respond to elevated [CO2], and the feedback of environmental factors upon them, will improve the ability to predict ecosystem responses to rising [ CO2] and increase the potential to adapt crops and managed ecosystems to future atmospheric [CO 2].
Abstract: This review summarizes current understanding of the mechanisms that underlie the response of photosynthesis and stomatal conductance to elevated carbon dioxide concentration ([CO2]), and examines how downstream processes and environmental constraints modulate these two fundamental responses. The results from free-air CO2 enrichment (FACE) experiments were summarized via meta-analysis to quantify the mean responses of stomatal and photosynthetic parameters to elevated [CO2]. Elevation of [CO2] in FACE experiments reduced stomatal conductance by 22%, yet, this reduction was not associated with a similar change in stomatal density. Elevated [CO2] stimulated light-saturated photosynthesis (Asat) in C3 plants grown in FACE by an average of 31%. However, the magnitude of the increase in Asat varied with functional group and environment. Functional groups with ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco)-limited photosynthesis at elevated [CO2] had greater potential for increases in Asat than those where photosynthesis became ribulose-1,5-bisphosphate (RubP)-limited at elevated [CO2]. Both nitrogen supply and sink capacity modulated the response of photosynthesis to elevated [CO2] through their impact on the acclimation of carboxylation capacity. Increased understanding of the molecular and biochemical mechanisms by which plants respond to elevated [CO2], and the feedback of environmental factors upon them, will improve our ability to predict ecosystem responses to rising [CO2] and increase our potential to adapt crops and managed ecosystems to future atmospheric [CO2].

1,836 citations


Journal ArticleDOI
TL;DR: Fitting this model is a way of exploring leaf level photosynthesis in terms of underlying biochemistry and biophysics is subject to assumptions that hold to a greater or lesser degree.
Abstract: Photosynthetic responses to carbon dioxide concentration can provide data on a number of important parameters related to leaf physiology. Methods for fitting a model to such data are briefly described. The method will fit the following parameters: Vcmax, J, TPU, Rd and gm [maximum carboxylation rate allowed by ribulose 1·5-bisphosphate carboxylase/oxygenase (Rubisco), rate of photosynthetic electron transport (based on NADPH requirement), triose phosphate use, day respiration and mesophyll conductance, respectively].The method requires at least five data pairs of net CO2 assimilation (A) and [CO2] in the intercellular airspaces of the leaf (Ci) and requires users to indicate the presumed limiting factor. The output is (1) calculated CO2 partial pressure at the sites of carboxylation, Cc, (2) values for the five parameters at the measurement temperature and (3) values adjusted to 25 °C to facilitate comparisons. Fitting this model is a way of exploring leaf level photosynthesis. However, interpreting leaf level photosynthesis in terms of underlying biochemistry and biophysics is subject to assumptions that hold to a greater or lesser degree, a major assumption being that all parts of the leaf are behaving in the same way at each instant.

1,103 citations


Journal ArticleDOI
TL;DR: The temperature response of instantaneous net CO(2) assimilation rate (A) is described in terms of these limitations, and possible limitations on A at elevated temperatures arising from heat-induced lability of Rubisco activase are evaluated.
Abstract: We review the current understanding of the temperature responses of C(3) and C(4) photosynthesis across thermal ranges that do not harm the photosynthetic apparatus. In C(3) species, photosynthesis is classically considered to be limited by the capacities of ribulose 1.5-bisphosphate carboxylase/oxygenase (Rubisco), ribulose bisphosphate (RuBP) regeneration or P(i) regeneration. Using both theoretical and empirical evidence, we describe the temperature response of instantaneous net CO(2) assimilation rate (A) in terms of these limitations, and evaluate possible limitations on A at elevated temperatures arising from heat-induced lability of Rubisco activase. In C(3) plants, Rubisco capacity is the predominant limitation on A across a wide range of temperatures at low CO(2) (<300 microbar), while at elevated CO(2), the limitation shifts to P(i) regeneration capacity at suboptimal temperatures, and either electron transport capacity or Rubisco activase capacity at supraoptimal temperatures. In C(4) plants, Rubisco capacity limits A below 20 degrees C in chilling-tolerant species, but the control over A at elevated temperature remains uncertain. Acclimation of C(3) photosynthesis to suboptimal growth temperature is commonly associated with a disproportional enhancement of the P(i) regeneration capacity. Above the thermal optimum, acclimation of A to increasing growth temperature is associated with increased electron transport capacity and/or greater heat stability of Rubisco activase. In many C(4) species from warm habitats, acclimation to cooler growth conditions increases levels of Rubisco and C(4) cycle enzymes which then enhance A below the thermal optimum. By contrast, few C(4) species adapted to cooler habitats increase Rubisco content during acclimation to reduced growth temperature; as a result, A changes little at suboptimal temperatures. Global change is likely to cause a widespread shift in patterns of photosynthetic limitation in higher plants. Limitations in electron transport and Rubisco activase capacity should be more common in the warmer, high CO(2) conditions expected by the end of the century.

869 citations


Journal ArticleDOI
TL;DR: It is necessary to reconsider the fundamental mechanisms of chloroplast energetics and clarify the essential functions of this electron flow in both photoprotection and photosynthesis.
Abstract: The light reactions in photosynthesis convert light energy into chemical energy in the form of ATP and drive the production of NADPH from NADP+. The reactions involve two types of electron flow in the chloroplast. While linear electron transport generates both ATP and NADPH, photosystem I cyclic electron transport is exclusively involved in ATP synthesis. The physiological significance of photosystem I cyclic electron transport has been underestimated, and our knowledge of the machineries involved remains very limited. However, recent genetic approaches using Arabidopsis thaliana have clarified the essential functions of this electron flow in both photoprotection and photosynthesis. Based on several lines of evidence presented here, it is necessary to reconsider the fundamental mechanisms of chloroplast energetics.

506 citations


Journal ArticleDOI
TL;DR: Transgenic plants grew faster, produced more shoot and root biomass, and contained more soluble sugars, reflecting reduced photorespiration and enhanced photosynthesis that correlated with an increased chloroplastic CO2 concentration in the vicinity of ribulose-1,5-bisphosphate carboxylase/oxygenase.
Abstract: We introduced the Escherichia coli glycolate catabolic pathway into Arabidopsis thaliana chloroplasts to reduce the loss of fixed carbon and nitrogen that occurs in C3 plants when phosphoglycolate, an inevitable by-product of photosynthesis, is recycled by photorespiration. Using step-wise nuclear transformation with five chloroplast-targeted bacterial genes encoding glycolate dehydrogenase, glyoxylate carboligase and tartronic semialdehyde reductase, we generated plants in which chloroplastic glycolate is converted directly to glycerate. This reduces, but does not eliminate, flux of photorespiratory metabolites through peroxisomes and mitochondria. Transgenic plants grew faster, produced more shoot and root biomass, and contained more soluble sugars, reflecting reduced photorespiration and enhanced photosynthesis that correlated with an increased chloroplastic CO2 concentration in the vicinity of ribulose-1,5-bisphosphate carboxylase/oxygenase. These effects are evident after overexpression of the three subunits of glycolate dehydrogenase, but enhanced by introducing the complete bacterial glycolate catabolic pathway. Diverting chloroplastic glycolate from photorespiration may improve the productivity of crops with C3 photosynthesis.

470 citations


Journal ArticleDOI
03 May 2007-Nature
TL;DR: The crystal structure of PSI provides a picture at near atomic detail of 11 out of 12 protein subunits of the reaction centre, and the understanding of the most efficient nano-photochemical machine in nature is extended.
Abstract: All higher organisms on Earth receive energy directly or indirectly from oxygenic photosynthesis performed by plants, green algae and cyanobacteria. Photosystem I (PSI) is a supercomplex of a reaction centre and light-harvesting complexes. It generates the most negative redox potential in nature, and thus largely determines the global amount of enthalpy in living systems. We report the structure of plant PSI at 3.4 A resolution, revealing 17 protein subunits. PsaN was identified in the luminal side of the supercomplex, and most of the amino acids in the reaction centre were traced. The crystal structure of PSI provides a picture at near atomic detail of 11 out of 12 protein subunits of the reaction centre. At this level, 168 chlorophylls (65 assigned with orientations for Q(x) and Q(y) transition dipole moments), 2 phylloquinones, 3 Fe(4)S(4) clusters and 5 carotenoids are described. This structural information extends the understanding of the most efficient nano-photochemical machine in nature.

458 citations


Journal ArticleDOI
TL;DR: The potential role of H2O2 in the photosynthetic mode of carbon assimilation, such as C4 metabolism and CAM (Crassulacean acid metabolism) is discussed and it is speculated that early in the evolution of oxygenic photosynthesis on Earth, H1O2 could have been involved in the development of modern photosystem II.
Abstract: Hydrogen peroxide (H2O2) is produced predominantly in plant cells during photosynthesis and photorespiration, and to a lesser extent, in respiration processes. It is the most stable of the so-called reactive oxygen species (ROS), and therefore plays a crucial role as a signalling molecule in various physiological processes. Intra- and intercellular levels of H2O2 increase during environmental stresses. Hydrogen peroxide interacts with thiol-containing proteins and activates different signalling pathways as well as transcription factors, which in turn regulate gene expression and cell-cycle processes. Genetic systems controlling cellular redox homeostasis and H2O2 signalling are discussed. In addition to photosynthetic and respiratory metabolism, the extracellular matrix (ECM) plays an important role in the generation of H2O2, which regulates plant growth, development, acclimatory and defence responses. During various environmental stresses the highest levels of H2O2 are observed in the leaf veins. Most of our knowledge about H2O2 in plants has been obtained from obligate C3 plants. The potential role of H2O2 in the photosynthetic mode of carbon assimilation, such as C4 metabolism and CAM (Crassulacean acid metabolism) is discussed. We speculate that early in the evolution of oxygenic photosynthesis on Earth, H2O2 could have been involved in the evolution of modern photosystem II.

388 citations


Journal ArticleDOI
TL;DR: Non-invasive probing of electron fluxes through PSI and PSII, and proton fluxes across the thylakoid membranes can provide insights into the operation of such regulatory processes in vivo.
Abstract: The light-dependent production of ATP and reductants by the photosynthetic apparatus in vivo involves a series of electron and proton transfers. Consideration is given as to how electron fluxes through photosystem I (PSI), using absorption spectroscopy, and through photosystem II (PSII), using chlorophyll fluorescence analyses, can be estimated in vivo. Measurements of light-induced electrochromic shifts using absorption spectroscopy provide a means of analyzing the proton fluxes across the thylakoid membranes in vivo. Regulation of these electron and proton fluxes is required for the thylakoids to meet the fluctuating metabolic demands of the cell. Chloroplasts exhibit a wide and flexible range of mechanisms to regulate electron and proton fluxes that enable chloroplasts to match light use for ATP and reductant production with the prevailing metabolic requirements. Non-invasive probing of electron fluxes through PSI and PSII, and proton fluxes across the thylakoid membranes can provide insights into the operation of such regulatory processes in vivo.

367 citations


Journal ArticleDOI
TL;DR: In this article, an evolutionary algorithm was used to progressively search for multiple alterations in partitioning that increase photosynthetic rate, and after 1,500 generations, photosynthesis was increased substantially.
Abstract: The distribution of resources between enzymes of photosynthetic carbon metabolism might be assumed to have been optimized by natural selection. However, natural selection for survival and fecundity does not necessarily select for maximal photosynthetic productivity. Further, the concentration of a key substrate, atmospheric CO(2), has changed more over the past 100 years than the past 25 million years, with the likelihood that natural selection has had inadequate time to reoptimize resource partitioning for this change. Could photosynthetic rate be increased by altered partitioning of resources among the enzymes of carbon metabolism? This question is addressed using an "evolutionary" algorithm to progressively search for multiple alterations in partitioning that increase photosynthetic rate. To do this, we extended existing metabolic models of C(3) photosynthesis by including the photorespiratory pathway (PCOP) and metabolism to starch and sucrose to develop a complete dynamic model of photosynthetic carbon metabolism. The model consists of linked differential equations, each representing the change of concentration of one metabolite. Initial concentrations of metabolites and maximal activities of enzymes were extracted from the literature. The dynamics of CO(2) fixation and metabolite concentrations were realistically simulated by numerical integration, such that the model could mimic well-established physiological phenomena. For example, a realistic steady-state rate of CO(2) uptake was attained and then reattained after perturbing O(2) concentration. Using an evolutionary algorithm, partitioning of a fixed total amount of protein-nitrogen between enzymes was allowed to vary. The individual with the higher light-saturated photosynthetic rate was selected and used to seed the next generation. After 1,500 generations, photosynthesis was increased substantially. This suggests that the "typical" partitioning in C(3) leaves might be suboptimal for maximizing the light-saturated rate of photosynthesis. An overinvestment in PCOP enzymes and underinvestment in Rubisco, sedoheptulose-1,7-bisphosphatase, and fructose-1,6-bisphosphate aldolase were indicated. Increase in sink capacity, such as increase in ADP-glucose pyrophosphorylase, was also indicated to lead to increased CO(2) uptake rate. These results suggest that manipulation of partitioning could greatly increase carbon gain without any increase in the total protein-nitrogen investment in the apparatus for photosynthetic carbon metabolism.

365 citations


Journal ArticleDOI
TL;DR: RNAi technology was applied to down-regulate the entire LHC gene family simultaneously to reduce energy losses by fluorescence and heat and increase photosynthetic efficiencies under high-light conditions, resulting in an increased efficiency of cell cultivation under elevated light conditions.
Abstract: The main function of the photosynthetic process is to capture solar energy and to store it in the form of chemical 'fuels'. Increasingly, the photosynthetic machinery is being used for the production of biofuels such as bio-ethanol, biodiesel and bio-H-2. Fuel production efficiency is directly dependent on the solar photon capture and conversion efficiency of the system. Green algae (e.g. Chlamydomonas reinhardtii) have evolved genetic strategies to assemble large light-harvesting antenna complexes (LHC) to maximize light capture under low-light conditions, with the downside that under high solar irradiance, most of the absorbed photons are wasted as fluorescence and heat to protect against photodamage. This limits the production process efficiency of mass culture. We applied RNAi technology to down-regulate the entire LHC gene family simultaneously to reduce energy losses by fluorescence and heat. The mutant Stm3LR3 had significantly reduced levels of LHCI and LHCII mRNAs and proteins while chlorophyll and pigment synthesis was functional. The grana were markedly less tightly stacked, consistent with the role of LHCII. Stm3LR3 also exhibited reduced levels of fluorescence, a higher photosynthetic quantum yield and a reduced sensitivity to photoinhibition, resulting in an increased efficiency of cell cultivation under elevated light conditions. Collectively, these properties offer three advantages in terms of algal bioreactor efficiency under natural high-light levels: (i) reduced fluorescence and LHC-dependent heat losses and thus increased photosynthetic efficiencies under high-light conditions; (ii) improved light penetration properties; and (iii) potentially reduced risk of oxidative photodamage of PSII.

331 citations


Journal ArticleDOI
TL;DR: Clear evidence is provided that RCA is a major limiting factor in plant photosynthesis under moderately elevated temperatures and a potential target for genetic manipulation to improve crop plants productivity under heat stress conditions.
Abstract: Plant photosynthesis declines when the temperature exceeds its optimum range. Recent evidence indicates that the reduction in photosynthesis is linked to ribulose-1,5-bis-phosphate carboxylase/oxygenase (Rubisco) deactivation due to the inhibition of Rubisco activase (RCA) under moderately elevated temperatures. To test the hypothesis that thermostable RCA can improve photosynthesis under elevated temperatures, we used gene shuffling technology to generate several Arabidopsis thaliana RCA1 (short isoform) variants exhibiting improved thermostability. Wild-type RCA1 and selected thermostable RCA1 variants were introduced into an Arabidopsis RCA deletion (Δrca) line. In a long-term growth test at either constant 26°C or daily 4-h 30°C exposure, the transgenic lines with the thermostable RCA1 variants exhibited higher photosynthetic rates, improved development patterns, higher biomass, and increased seed yields compared with the lines expressing wild-type RCA1 and a slight improvement compared with untransformed Arabidopsis plants. These results provide clear evidence that RCA is a major limiting factor in plant photosynthesis under moderately elevated temperatures and a potential target for genetic manipulation to improve crop plants productivity under heat stress conditions.

Journal ArticleDOI
TL;DR: In this paper, the authors showed that tomato (Solanum lycopersicum) plants expressing a fragment of a fumarate hydratase (fumarase) gene in the antisense orientation and exhibiting considerable reductions in the mitochondrial activity of this enzyme show impaired photosynthesis.
Abstract: Transgenic tomato (Solanum lycopersicum) plants expressing a fragment of a fumarate hydratase (fumarase) gene in the antisense orientation and exhibiting considerable reductions in the mitochondrial activity of this enzyme show impaired photosynthesis. The rate of the tricarboxylic acid cycle was reduced in the transformants relative to the other major pathways of carbohydrate oxidation and the plants were characterized by a restricted rate of dark respiration. However, biochemical analyses revealed relatively little alteration in leaf metabolism as a consequence of reducing the fumarase activity. That said, in comparison to wild-type plants, CO 2 assimilation was reduced by up to 50% under atmospheric conditions and plants were characterized by a reduced biomass on a whole plant basis. Analysis of further photosynthetic parameters revealed that there was little difference in pigment content in the transformants but that the rate of transpiration and stomatal conductance was markedly reduced. Analysis of the response of the rate of photosynthesis to variation in the concentration of CO 2 confirmed that this restriction was due to a deficiency in stomatal function.

Journal ArticleDOI
TL;DR: The "near-infrared (NIR) end" of the red edge to trend from blue-shifted to reddest for snow algae, temperate algae, lichens, mosses, aquatic plants, and finally terrestrial vascular plants is found.
Abstract: Why do plants reflect in the green and have a “red edge” in the red, and should extrasolar photosynthesis be the same? We provide (1) a brief review of how photosynthesis works, (2) an overview of the diversity of photosynthetic organisms, their light harvesting systems, and environmental ranges, (3) a synthesis of photosynthetic surface spectral signatures, and (4) evolutionary rationales for photosynthetic surface reflectance spectra with regard to utilization of photon energy and the planetary light environment. We found the “near-infrared (NIR) end” of the red edge to trend from blue-shifted to reddest for (in order) snow algae, temperate algae, lichens, mosses, aquatic plants, and finally terrestrial vascular plants. The red edge is weak or sloping in lichens. Purple bacteria exhibit possibly a sloping edge in the NIR. More studies are needed on pigment–protein complexes, membrane composition, and measurements of bacteria before firm conclusions can be drawn about the role of the NIR reflectance. Pig...

Journal ArticleDOI
TL;DR: The first challenge is presented by the properties of ribulose bisphosphate carboxylase-oxygenase (Rubisco), which accounts for almost 50% of the world's photosynthesis as discussed by the authors.
Abstract: Aquatic photosynthetic microorganisms account for almost 50% of the world's photosynthesis ([19][1]). These organisms face several challenges in acquiring CO2 from the environment. The first challenge is presented by the properties of ribulose bisphosphate carboxylase-oxygenase (Rubisco). Rubisco is

Journal ArticleDOI
TL;DR: The regulation ofRubisco activity in higher plants is reviewed here, including the role of Rubisco activase, tight binding inhibitors, and the impact of abiotic stress upon them.
Abstract: In photosynthesis Rubisco catalyses the assimilation of CO2 by the carboxylation of ribulose-1,5-bisphosphate. However, the catalytic properties of Rubisco are not optimal for current or projected environments and limit the efficiency of photosynthesis. Rubisco activity is highly regulated in response to short-term fluctuations in the environment, although such regulation may not be optimally poised for crop productivity. The regulation of Rubisco activity in higher plants is reviewed here, including the role of Rubisco activase, tight binding inhibitors, and the impact of abiotic stress upon them.

Journal ArticleDOI
TL;DR: The results presented here show that the zooxanthellae of M. cavernosa acquire nitrogen from cyanobacterial nitrogen fixation, and that the distribution of corals with symbiotic cyanobacteria is positively correlated with increasing depth.
Abstract: Colonies of the Caribbean coral Montastraea cavernosa (Linnaeus) that harbor endosymbiotic cyanobacteria can fix nitrogen, whereas conspecifics without these symbionts cannot. The pattern of nitrogen fixation is diurnal and maximum rates occur in the early morning and evening. An analysis of delta N-15 stable isotope data showed that the zooxanthellae, but not the animal tissue, from colonies with cyanobacteria preferentially use the products derived from nitrogen fixation, and that these zooxanthellae also have a greater DNA content per cell, suggesting that these cells are in the DNA synthesis (S) and gap (G(2)) + Mitosis (M) phase of their cell cyle and are preparing to undergo cell division. Since nitrogen fixation did not occur during those times of the day when hyperoxia is known to occur, low oxygen concentrations might be required to support cyanobacterial respiration and provide the energy needed to fix nitrogen because the reaction centers of these cyanobacteria are uncoupled from light harvesting accessory pigments and the photosynthetic electron transport chain. Consistent with this were the depleted delta C-13 stable isotope signatures in all compartments of those corals with symbiotic cyanobacteria, which show an increase in heterotrophy compared with samples of M. cavernosa without cyanobacteria. Using modeled underwater light fields and measurements of photosynthesis, we show that the amount of time in which nitrogen fixation in these corals can take place increases with depth and that the distribution of corals with symbiotic cyanobacteria is positively correlated with increasing depth. The results presented here show that the zooxanthellae of M. cavernosa acquire nitrogen from cyanobacterial nitrogen fixation. Given that nitrogen limitation has long been proposed to contribute to the stability of these symbiotic associations, the mechanism by which zooxanthellae symbiosis in these corals is maintained remains an important question and the subject of future study.

Journal ArticleDOI
TL;DR: The selective toxicity of H2O2 was investigated to develop a potential tool for limiting cyanobacterial blooms and to better understand the occurrence of cyanobacteria and other phytoplankton species in relation to reactive oxygen species in surface waters.
Abstract: The selective toxicity of H2O2 was investigated to develop a potential tool for limiting cyanobacterial blooms and to better understand the occurrence of cyanobacteria and other phytoplankton species in relation to reactive oxygen species in surface waters. The cyanobacterium Microcystis aeruginosa, the green alga Pseudokirchneriella subcapitata, and the diatom Navicula seminulum were tested under pulse exposure to H2O2 in the dark and at various irradiances. H2O2 was decomposed at rates depending on algal species and was proportional to irradiance. The cyanobacterium was affected by H2O2 at 10 times lower concentrations than green alga and diatom, and a strong light-dependent toxicity enhanced the difference. The inhibition was measured as photosynthetic yield (Fv/Fm) in pulse amplitude modulated fluorometry, and was confirmed by changes in minimal fluorescence (F0) and photosynthetic oxygen evolution. Single doses of 0.27 mg L-1 of H2O2 caused 50% inhibition to M. aeruginosa at high irradiance. Such con...

Journal ArticleDOI
25 Aug 2007-Planta
TL;DR: Recent advances on green algal hydrogen metabolism are summarized and approaches discussed are beginning to address the biochemistry of anaerobic H2 photoproduction, its genes, proteins, regulation, and communication with other metabolic pathways in microalgae.
Abstract: Unicellular green algae have the ability to operate in two distinctly different environments (aerobic and anaerobic), and to photosynthetically generate molecular hydrogen (H2). A recently developed metabolic protocol in the green alga Chlamydomonas reinhardtii permitted separation of photosynthetic O2-evolution and carbon accumulation from anaerobic consumption of cellular metabolites and concomitant photosynthetic H2-evolution. The H2 evolution process was induced upon sulfate nutrient deprivation of the cells, which reversibly inhibits photosystem-II and O2-evolution in their chloroplast. In the absence of O2, and in order to generate ATP, green algae resorted to anaerobic photosynthetic metabolism, evolved H2 in the light and consumed endogenous substrate. This study summarizes recent advances on green algal hydrogen metabolism and discusses avenues of research for the further development of this method. Included is the mechanism of a substantial tenfold starch accumulation in the cells, observed promptly upon S-deprivation, and the regulated starch and protein catabolism during the subsequent H2-evolution. Also discussed is the function of a chloroplast envelope-localized sulfate permease, and the photosynthesis–respiration relationship in green algae as potential tools by which to stabilize and enhance H2 metabolism. In addition to potential practical applications of H2, approaches discussed in this work are beginning to address the biochemistry of anaerobic H2 photoproduction, its genes, proteins, regulation, and communication with other metabolic pathways in microalgae. Photosynthetic H2 production by green algae may hold the promise of generating a renewable fuel from nature’s most plentiful resources, sunlight and water. The process potentially concerns global warming and the question of energy supply and demand.

Journal ArticleDOI
TL;DR: This review summarizes recent progress in the identification of genes and enzymes in the biosynthetic pathways leading to Chls and BChls, the essential tetrapyrrole cofactors of photosynthesis, and addresses the mechanisms for generating functional diversity for solar energy capture and conversion in chlorophototrophs.
Abstract: The use of photochemical reaction centers to convert light energy into chemical energy, chlorophototrophy, occurs in organisms belonging to only five eubacterial phyla: Cyanobacteria, Proteobacteria, Chlorobi, Chloroflexi, and Firmicutes. All chlorophototrophs synthesize two types of pigments: (a) chlorophylls and bacteriochlorophylls, which function in both light harvesting and uniquely in photochemistry; and (b) carotenoids, which function primarily as photoprotective pigments but can also participate in light harvesting. Although hundreds of carotenoids have been identified, only 12 types of chlorophylls (Chl a, b, d; divinyl-Chl a and b; and 8(1)-hydroxy-Chl a) and bacteriochlorophylls (BChl a, b, c, d, e, and g) are currently known to occur in bacteria. This review summarizes recent progress in the identification of genes and enzymes in the biosynthetic pathways leading to Chls and BChls, the essential tetrapyrrole cofactors of photosynthesis, and addresses the mechanisms for generating functional diversity for solar energy capture and conversion in chlorophototrophs.

Journal ArticleDOI
TL;DR: During leaf and chloroplast development in spring plastidic isoprenoid biosynthesis provides primarily thylakoid carotenoids, the phytyl side-chain of chlorophylls and the electron carriers phylloquinone K1, α-tocoquinone and α-tocopherol, as well as the nona-prenyl side- chain of plastoquinone-9.
Abstract: The localization of isoprenoid lipids in chloroplasts, the accumulation of particular isoprenoids under high irradiance conditions, and channelling of photosynthetically fixed carbon into plastidic thylakoid isoprenoids, volatile isoprenoids, and cytosolic sterols are reviewed. During leaf and chloroplast development in spring plastidic isoprenoid biosynthesis provides primarily thylakoid carotenoids, the phytyl side-chain of chlorophylls and the electron carriers phylloquinone K1, α-tocoquinone and α-tocopherol, as well as the nona-prenyl side-chain of plastoquinone-9. Under high irradiance, plants develop sun leaves and high light (HL) leaves with sun-type chloroplasts that possess, besides higher photosynthetic CO2 assimilation rates, different quantitative levels of pigments and prenylquinones as compared to shade leaves and low light (LL) leaves. After completion of chloroplast thylakoid synthesis plastidic isoprenoid biosynthesis continues at high irradiance conditions, constantly accumulating α-tocopherol (α-T) and the reduced form of plastoquinone-9 (PQ-9H2) deposited in the steadily enlarging osmiophilic plastoglobuli, the lipid reservoir of the chloroplast stroma. In sun leaves of beech (Fagus) and in 3-year-old sunlit Ficus leaves the level of α-T and PQ-9 can exceed that of chlorophyll b. Most plants respond to HL conditions (sun leaves, leaves suddenly lit by the sun) with a 1.4–2-fold increase of xanthophyll cycle carotenoids (violaxanthin, zeaxanthin, neoxanthin), an enhanced operation of the xanthophyll cycle and an increase of β-carotene levels. This is documented by significantly lower values for the weight ratio chlorophylls to carotenoids (range: 3.6–4.6) as compared to shade and LL leaves (range: 4.8–7.0). Many plant leaves emit under HL and high temperature conditions at high rates the volatile compounds isoprene (broadleaf trees) or methylbutenol (American ponderosa pines), both of which are formed via the plastidic 1-deoxy-d-xylulose-phosphate/2-C-methylerythritol 5-phosphate (DOXP/MEP) pathway. Other plants by contrast, accumulate particular mono- and diterpenes. Under adequate photosynthetic conditions the chloroplastidic DOXP/MEP isoprenoid pathway essentially contributes, with its C5 isoprenoid precusors, to cytosolic sterol biosynthesis. The possible cross-talk between the two cellular isoprenoid pathways, the acetate/MVA and the DOXP/MEP pathways, that preferentially proceeds in a plastid-to-cytosol direction, is shortly discussed.

Journal ArticleDOI
TL;DR: It is concluded that the drought-induced inhibition of photosynthesis under different irradiances in the rice was due to both diffusive and metabolic limitations.
Abstract: Photoprotection mechanisms of rice plants were studied when its seedlings were subjected to the combined stress of water and high light. The imposition of water stress, induced by PEG 6000 which was applied to roots, resulted in substantial inhibition of stomatal conductance and net photosynthesis under all irradiance treatments. Under high light stress, the rapid decline of photosynthesis with the development of water stress was accompanied by decreases in the maximum velocity of RuBP carboxylation by Rubisco (V(cmax)), the capacity for ribulose-1,5-bisphosphate regeneration (J(max)), Rubisco and stromal FBPase activities, and the quantum efficiency of photosystem II, in the absence of any stomatal limitation of CO(2) supply. Water stress significantly reduced the energy flux via linear electron transport (J(PSII)), but increased light-dependent and DeltapH- and xanthophyll-mediated thermal dissipation (J(NPQ)). It is concluded that the drought-induced inhibition of photosynthesis under different irradiances in the rice was due to both diffusive and metabolic limitations. Metabolic limitation of photosynthesis may be related to the adverse effects of some metabolic processes and the oxidative damage to the chloroplast. Meanwhile, an enhanced thermal dissipation is an important process to minimize the adverse effects of drought and high irradiance when CO(2) assimilation is suppressed.

Journal ArticleDOI
TL;DR: A higher CO (2) assimilation rate per leaf area was observed frequently in plants supplied with ammonium than in those supplied with nitrate, and these results were dependent not only on higher Rubisco content and/or activity, but also on RuBP regeneration rate.
Abstract: Ammonium and nitrate as different forms of nitrogen nutrients impact differently on some physiological and biochemical processes in higher plants. Compared to nitrate, ammonium results in small root and small leaf area, which may contribute to a low carbon gain, and an inhibition on growth. On the other hand, due to (photo)energy saving, a higher CO (2) assimilation rate per leaf area was observed frequently in plants supplied with ammonium than in those supplied with nitrate. These results were dependent not only on higher Rubisco content and/or activity, but also on RuBP regeneration rate. The difference in morphology such as chloroplast volume and specific leaf weight might be the reason why the CO (2) concentration in the carboxylation site and hence the photorespiration rate differs in plants supplied with the two nitrogen forms. The effect of nitrogen form on water uptake and transportation in plants is dependent both on leaf area or shoot parameter, and on the root activity (i.e., root hydraulic conductivity, aquaporin activity).

Journal ArticleDOI
TL;DR: Exogenously added Put was used to compensate for this stress condition and to adjust the above mentioned changes, so that to confer some kind of tolerance to the photosynthetic apparatus against enhanced NaCl-salinity and permit cell growth even in NaCl concentrations that under natural conditions would be toxic.

Journal ArticleDOI
TL;DR: The light-induced/dark-reversible changes in the chlorophyll a fluorescence of photosynthetic cells and membranes in the μs-to-several min time window (fluorescence induction, FI; or Kautsky transient) reflect quantum yield changes ( quenching/de-quenching) as well as changes inThe number of Chls a in photosystem II (PS II; state transitions).
Abstract: The light-induced/dark-reversible changes in the chlorophyll (Chl) a fluorescence of photosynthetic cells and membranes in the μs-to-several min time window (fluorescence induction, FI; or Kautsky transient) reflect quantum yield changes (quenching/de-quenching) as well as changes in the number of Chls a in photosystem II (PS II; state transitions). Both relate to excitation trapping in PS II and the ensuing photosynthetic electron transport (PSET), and to secondary PSET effects, such as ion translocation across thylakoid membranes and filling or depletion of post-PS II and post-PS I pools of metabolites. In addition, high actinic light doses may depress Chl a fluorescence irreversibly (photoinhibitory lowering; q(I)). FI has been studied quite extensively in plants an algae (less so in cyanobacteria) as it affords a low resolution panoramic view of the photosynthesis process. Total FI comprises two transients, a fast initial (OPS; for Origin, Peak, Steady state) and a second slower transient (SMT; for Steady state, Maximum, Terminal state), whose details are characteristically different in eukaryotic (plants and algae) and prokaryotic (cyanobacteria) oxygenic photosynthetic organisms. In the former, maximal fluorescence output occurs at peak P, with peak M lying much lower or being absent, in which case the PSMT phases are replaced by a monotonous PT fluorescence decay. In contrast, in phycobilisome (PBS)-containing cyanobacteria maximal fluorescence occurs at M which lies much higher than peak P. It will be argued that this difference is caused by a fluorescence lowering trend (state 1 → 2 transition) that dominates the FI pattern of plants and algae, and correspondingly by a fluorescence increasing trend (state 2 → 1 transition) that dominates the FI of PBS-containing cyanobacteria. Characteristically, however, the FI pattern of the PBS-minus cyanobacterium Acaryochloris marina resembles the FI patterns of algae and plants and not of the PBS-containing cyanobacteria.

Journal ArticleDOI
21 Sep 2007-Planta
TL;DR: H2 generation seems to be the only significant electron sink for PSII activity and rescues this strain at least partially from a light-sensitive phenotype and indicates that the down-regulation of assimilatory pathways in S-deprived C. reinhardtii cells is one of the important prerequisites for a sustained H2 evolution.
Abstract: The unicellular green alga Chlamydomonas reinhardtii possesses a [FeFe]-hydrogenase HydA1 (EC 1.12.7.2), which is coupled to the photosynthetic electron transport chain. Large amounts of H2 are produced in a light-dependent reaction for several days when C. reinhardtii cells are deprived of sulfur. Under these conditions, the cells drastically change their physiology from aerobic photosynthetic growth to an anaerobic resting state. The understanding of the underlying physiological processes is not only important for getting further insights into the adaptability of photosynthesis, but will help to optimize the biotechnological application of algae as H2 producers. Two of the still most disputed questions regarding H2 generation by C. reinhardtii concern the electron source for H2 evolution and the competition of the hydrogenase with alternative electron sinks. We analyzed the H2 metabolism of S-depleted C. reinhardtii cultures utilizing a special mass spectrometer setup and investigated the influence of photosystem II (PSII)- or ribulosebisphosphate-carboxylase/oxygenase (Rubisco)-deficiency. We show that electrons for H2-production are provided both by PSII activity and by a non-photochemical plastoquinone reduction pathway, which is dependent on previous PSII activity. In a Rubisco-deficient strain, which produces H2 also in the presence of sulfur, H2 generation seems to be the only significant electron sink for PSII activity and rescues this strain at least partially from a light-sensitive phenotype. The latter indicates that the down-regulation of assimilatory pathways in S-deprived C. reinhardtii cells is one of the important prerequisites for a sustained H2 evolution.

Journal ArticleDOI
TL;DR: The results suggest that photosynthetic electron transport of chloroplasts is closely related to AsA pool size regulation in leaves.
Abstract: It has been known that leaves exposed to high light contain more L-ascorbic acid (AsA) than those in the shade. However, the mechanism of the light regulation of the AsA pool size in plants is largely unknown. In this work, the relationship between gene expression levels related to AsA biosynthesis and photosynthesis have been studied. When 2-week-old Arabidopsis plants grown under a 16 h daily photoperiod were moved into the dark, the AsA level in the leaves was decreased by 91% in 72 h, whereas it increased by 171% in the leaves of plants exposed to continuous light during the same period. Among the several enzymes of the AsA biosynthesis pathway, the transcript levels of GDP-D-mannose pyrophosphorylase, L-galactose 1-P phosphatase, L-galactono-1,4-lactone dehydrogenase, and the VTC2 gene were down-regulated in the dark. Treatment with inhibitors of photosynthesis, 3-(3,4-dichlorophenyl)-1,1-dimethylurea and atrazine, arrested a rise in the AsA pool size accompanying the decrease in the transcript levels of the genes of the above enzyme in the leaves. When the plants were transferred to a medium containing 0.5% (w/v) sucrose, the photosynthesis activities and the leaf AsA levels were lowered even under exposure to light compared with those in plants on the medium without sucrose. In contrast, the AsA level in leaves of the sugar-insensitive Arabidopsis mutant abi4/sun6 was unaffected by external sucrose. No significant difference in the expression profiles for AsA biosynthesis enzymes was observed between the wild-type and mutant plants by sucrose feeding. The results suggest that photosynthetic electron transport of chloroplasts is closely related to AsA pool size regulation in leaves.

Journal ArticleDOI
TL;DR: Results obtained in both plant systems suggest that Chlase functions as a rate-limiting enzyme in chlorophyll catabolism controlled via posttranslational regulation.
Abstract: Chlorophyll is a central player in harvesting light energy for photosynthesis, yet the rate-limiting steps of chlorophyll catabolism and the regulation of the catabolic enzymes remain unresolved. To study the role and regulation of chlorophyllase (Chlase), the first enzyme of the chlorophyll catabolic pathway, we expressed precursor and mature versions of citrus (Citrus sinensis) Chlase in two heterologous plant systems: (1) squash (Cucurbita pepo) plants using a viral vector expression system; and (2) transiently transformed tobacco (Nicotiana tabacum) protoplasts. Expression of full-length citrus Chlase resulted in limited chlorophyll breakdown in protoplasts and no visible leaf phenotype in whole plants, whereas expression of a Chlase version lacking the N-terminal 21 amino acids (ChlaseDeltaN), which corresponds to the mature protein, led to extensive chlorophyll breakdown in both tobacco protoplasts and squash leaves. ChlaseDeltaN-expressing squash leaves displayed a dramatic chlorotic phenotype in plants grown under low-intensity light, whereas under natural light a lesion-mimic phenotype occurred, which was demonstrated to follow the accumulation of chlorophyllide, a photodynamic chlorophyll breakdown product. Full-length and mature citrus Chlase versions were localized to the chloroplast membrane fraction in expressing tobacco protoplasts, where processing of the N-terminal 21 amino acids appears to occur. Results obtained in both plant systems suggest that Chlase functions as a rate-limiting enzyme in chlorophyll catabolism controlled via posttranslational regulation.

Journal ArticleDOI
TL;DR: The varied physiological responses to Fe availability of the three cyanobacteria reflect their nitrogenfixation strategies, cell size, unicellular or colonial organization, and may explain, at least in part, the ecological distribution of these photosynthetic bacteria.
Abstract: Diazotrophic (nitrogen-fixing) cyanobacteria are important contributors of new nitrogen to oligotrophic environments and greatly influence oceanic productivity. We investigated how iron availability influences the physiology of cyanobacterial diazotrophs with different strategies for segregating nitrogen fixation and photosynthesis. We examined growth, photosynthesis, nitrogen fixation, and Fe requirements of the filamentous nonheterocystous Trichodesmium, the filamentous heterocystous Anabaena, and the unicellular Cyanothece under a range of Fe concentrations. Under similar Fe concentrations the three species differed in N2-fixation rates, photosynthetic activity, the relative abundance of the photosynthetic units PSI : PSII, elemental stoichiometry, and Fe use efficiency. Complex colonial forms such as Trichodesmium and Anabaena are more likely to be Fe limited in their natural environments and are more efficient at utilizing Fe than unicellular diazotrophs such as Cyanothece. The varied physiological responses to Fe availability of the three cyanobacteria reflect their nitrogenfixation strategies, cell size, unicellular or colonial organization, and may explain, at least in part, the ecological distribution of these photosynthetic bacteria.

Journal ArticleDOI
TL;DR: The temperature effects on growth, development, and photosynthesis may remain unchanged in elevated Ca compared with current Ca in maize, and the dependence of leaf appearance rate, biomass, leaf area, leaf and canopy photosynthesis, and C4 enzyme activities was comparable between current and elevated Ca.

Journal ArticleDOI
TL;DR: The photosynthetic pathways of diatoms are diverse, and may involve combined CO2-concentrating mechanisms, and the requirement for metabolic and functional genetic and enzymic analyses before accepting the presence of C4-metabolic enzymes as evidence for C4 photosynthesis is emphasized.
Abstract: Marine diatoms are responsible for up to 20% of global CO2 fixation. Their photosynthetic efficiency is enhanced by concentrating CO2 around Rubisco, diminishing photorespiration, but the mechanism is yet to be resolved. Diatoms have been regarded as C3 photosynthesizers, but recent metabolic labeling and genome sequencing data suggest that they perform C4 photosynthesis. We studied the pathways of photosynthetic carbon assimilation in two diatoms by short-term metabolic 14C labeling. In Thalassiosira weissflogii, both C3 (glycerate-P and triose-P) and C4 (mainly malate) compounds were major initial (2–5 s) products, whereas Thalassiosira pseudonana produced mainly C3 and C6 (hexose-P) compounds. The data provide evidence of C3-C4 intermediate photosynthesis in T. weissflogii, but exclusively C3 photosynthesis in T. pseudonana. The labeling patterns were the same for cells grown at near-ambient (380 μL L−1) and low (100 μL L−1) CO2 concentrations. The lack of environmental modulation of carbon assimilatory pathways was supported in T. pseudonana by measurements of gene transcript and protein abundances of C4-metabolic enzymes (phosphoenolpyruvate carboxylase and phosphoenolpyruvate carboxykinase) and Rubisco. This study suggests that the photosynthetic pathways of diatoms are diverse, and may involve combined CO2-concentrating mechanisms. Furthermore, it emphasizes the requirement for metabolic and functional genetic and enzymic analyses before accepting the presence of C4-metabolic enzymes as evidence for C4 photosynthesis.