scispace - formally typeset
Search or ask a question

Showing papers on "Photosynthesis published in 2022"


Journal ArticleDOI
TL;DR: In this article , a review suggests ways to integrate information from different disciplines, often without heeding information provided by soil scientists, ecophysiologists, and crop physiologists, to discover what the trade-offs are of different patterns of investment in P fractions.
Abstract: Tremendous progress has been made on molecular aspects of plant phosphorus (P) nutrition, often without heeding information provided by soil scientists, ecophysiologists, and crop physiologists. This review suggests ways to integrate information from different disciplines. When soil P availability is very low, P-mobilizing strategies are more effective than mycorrhizal strategies. Soil parameters largely determine how much P roots can acquire from P-impoverished soil, and kinetic properties of P transporters are less important. Changes in the expression of P transporters avoid P toxicity. Plants vary widely in photosynthetic P-use efficiency, photosynthesis per unit leaf P. The challenge is to discover what the trade-offs are of different patterns of investment in P fractions. Less investment may save P, but are costs incurred? Are these costs acceptable for crops? These questions can be resolved only by the concerted action of scientists working at both molecular and physiological levels, rather than pursuing these problems independently.

101 citations


Journal ArticleDOI
TL;DR: In this paper, Cucurbita pepo was used as model plant to test the toxic effects of the four most abundant microplastics identified in contaminated soils, i.e. polypropylene (PP), polyethylene (PE), polyvinylchloride (PVC), and polyethyleneterephthalate (PET).

83 citations


Journal ArticleDOI
TL;DR: In this article , Cucurbita pepo was used as model plant to test the toxic effects of the four most abundant microplastics identified in contaminated soils, i.e. polypropylene (PP), polyethylene (PE), polyvinylchloride (PVC), and polyethyleneterephthalate (PET).

70 citations


Journal ArticleDOI
TL;DR: Carotenoids are isoprenoid metabolites synthesized de novo in all photosynthetic organisms and are essential for plants with diverse functions in photosynthesis, photoprotection, pigmentation, phytohormone synthesis, and signaling as mentioned in this paper .
Abstract: Abstract Carotenoids are isoprenoid metabolites synthesized de novo in all photosynthetic organisms. Carotenoids are essential for plants with diverse functions in photosynthesis, photoprotection, pigmentation, phytohormone synthesis, and signaling. They are also critically important for humans as precursors of vitamin A synthesis and as dietary antioxidants. The vital roles of carotenoids to plants and humans have prompted significant progress toward our understanding of carotenoid metabolism and regulation. New regulators and novel roles of carotenoid metabolites are continuously revealed. This review focuses on current status of carotenoid metabolism and highlights recent advances in comprehension of the intrinsic and multi-dimensional regulation of carotenoid accumulation. We also discuss the functional evolution of carotenoids, the agricultural and horticultural application, and some key areas for future research.

69 citations


Journal ArticleDOI
TL;DR: In this paper, the beneficial effects of seed priming with zinc oxide nanoparticles (ZnO NPs) in mitigating the phytotoxicity induced by cobalt (Co) stress were investigated.

67 citations


Journal ArticleDOI
TL;DR: In this paper , the beneficial effects of seed priming with zinc oxide nanoparticles (ZnO NPs) in mitigating the phytotoxicity induced by cobalt (Co) stress were investigated.

66 citations


Journal ArticleDOI
TL;DR: In this paper , the authors examined the defensive role of melatonin in photosynthesis, root architecture, and the antioxidant enzymes' activities of tomato seedlings subjected to DR stress, and determined that ME pretreatment could efficiently improve the seedlings growth, root characteristics, leaf photosynthesis and antioxidant machinery under DR stress.
Abstract: Tomato is an important vegetable that is highly sensitive to drought (DR) stress which impairs the development of tomato seedlings. Recently, melatonin (ME) has emerged as a nontoxic, regulatory biomolecule that regulates plant growth and enhances the DR tolerance mechanism in plants. The present study was conducted to examine the defensive role of ME in photosynthesis, root architecture, and the antioxidant enzymes’ activities of tomato seedlings subjected to DR stress. Our results indicated that DR stress strongly suppressed growth and biomass production, inhibited photosynthesis, negatively affected root morphology, and reduced photosynthetic pigments in tomato seedlings. Per contra, soluble sugars, proline, and ROS (reactive oxygen species) were suggested to be improved in seedlings under DR stress. Conversely, ME (100 µM) pretreatment improved the detrimental-effect of DR by restoring chlorophyll content, root architecture, gas exchange parameters and plant growth attributes compared with DR-group only. Moreover, ME supplementation also mitigated the antioxidant enzymes [APX (ascorbate peroxidase), CAT (catalase), DHAR (dehydroascorbate reductase), GST (glutathione S-transferase), GR (glutathione reductase), MDHAR (monodehydroascorbate reductase), POD (peroxidase), and SOD (superoxide dismutase)], non-enzymatic antioxidant [AsA (ascorbate), DHA (dehydroascorbic acid), GSH (glutathione), and GSSG, (oxidized glutathione)] activities, reduced oxidative damage [EL (electrolyte leakage), H2O2 (hydrogen peroxide), MDA (malondialdehyde), and O2•− (superoxide ion)] and osmoregulation (soluble sugars and proline) of tomato seedlings, by regulating gene expression for SOD, CAT, APX, GR, POD, GST, DHAR, and MDHAR. These findings determine that ME pretreatment could efficiently improve the seedlings growth, root characteristics, leaf photosynthesis and antioxidant machinery under DR stress and thereby increasing the seedlings’ adaptability to DR stress.

66 citations


Journal ArticleDOI
19 Aug 2022-Science
TL;DR: De Souza et al. as mentioned in this paper applied a bioengineered solution that speeds up accommodation by nonphotochemical quenching in soybeans, a widely cultivated and essential crop.
Abstract: Crop leaves in full sunlight dissipate damaging excess absorbed light energy as heat. This protective dissipation continues after the leaf transitions to shade, reducing crop photosynthesis. A bioengineered acceleration of this adjustment increased photosynthetic efficiency and biomass in tobacco in the field. But could that also translate to increased yield in a food crop? Here we bioengineered the same change into soybean. In replicated field trials, photosynthetic efficiency in fluctuating light was higher and seed yield in five independent transformation events increased by up to 33%. Despite increased seed quantity, seed protein and oil content were unaltered. This validates increasing photosynthetic efficiency as a much needed strategy toward sustainably increasing crop yield in support of future global food security. Description More soybeans by light management Plants protect themselves from too much sun by dissipating excess light energy. Unfortunately, the switch from dissipating light energy to using light energy for photosynthesis is not as nimble as the clouds moving across the sky. De Souza et al. applied a bioengineered solution that speeds up accommodation by nonphotochemical quenching in soybeans, a widely cultivated and essential crop. In field trials, seed yield increased in some cases up to 33%. —PJH Bioengineering to improve regulation of photoprotection increases photosynthetic efficiency and seed yield in soybean.

65 citations


Journal ArticleDOI
TL;DR: In this article , an inorganic Mo-doped faceted BiVO4 (Mo:BiVO4) system that is resistant to radical oxidation and exhibits a high overall H2O2 photosynthesis efficiency among inorganic photocatalysts was presented.
Abstract: Artificial photosynthesis of H2O2 using earth-abundant water and oxygen is a promising approach to achieve scalable and cost-effective solar fuel production. Recent studies on this topic have made significant progress, yet are mainly focused on using organic polymers. This set of photocatalysts is susceptible to potent oxidants (e.g. hydroxyl radical) that are inevitably formed during H2O2 generation. Here, we report an inorganic Mo-doped faceted BiVO4 (Mo:BiVO4) system that is resistant to radical oxidation and exhibits a high overall H2O2 photosynthesis efficiency among inorganic photocatalysts, with an apparent quantum yield of 1.2% and a solar-to-chemical conversion efficiency of 0.29% at full spectrum, as well as an apparent quantum yield of 5.8% at 420 nm. The surface-reaction kinetics and selectivity of Mo:BiVO4 were tuned by precisely loading CoOx and Pd on {110} and {010} facets, respectively. Time-resolved spectroscopic investigations of photocarriers suggest that depositing select cocatalysts on distinct facet tailored the interfacial energetics between {110} and {010} facets and enhanced charge separation in Mo:BiVO4, therefore overcoming a key challenge in developing efficient inorganic photocatalysts. The promising H2O2 generation efficiency achieved by delicate design of catalyst spatial and electronic structures sheds light on applying robust inorganic particulate photocatalysts to artificial photosynthesis of H2O2.

63 citations


Journal ArticleDOI
22 Jul 2022-Science
TL;DR: Wei et al. as discussed by the authors identified a DREB (Dehydration Responsive Element Binding) family member, OsDREB1C, in which expression is induced by both light and low nitrogen status.
Abstract: Complex biological processes such as plant growth and development are often under the control of transcription factors that regulate the expression of large sets of genes and activate subordinate transcription factors in a cascade-like fashion. Here, by screening candidate photosynthesis-related transcription factors in rice, we identified a DREB (Dehydration Responsive Element Binding) family member, OsDREB1C, in which expression is induced by both light and low nitrogen status. We show that OsDREB1C drives functionally diverse transcriptional programs determining photosynthetic capacity, nitrogen utilization, and flowering time. Field trials with OsDREB1C-overexpressing rice revealed yield increases of 41.3 to 68.3% and, in addition, shortened growth duration, improved nitrogen use efficiency, and promoted efficient resource allocation, thus providing a strategy toward achieving much-needed increases in agricultural productivity. Description Genetic improvement drives rice yield Improvements in agricultural productivity could lessen the impact of agriculture on the environment and perhaps supply more food from less land. Working in rice, Wei et al. identified a transcription factor that, when overexpressed, has a variety of useful effects (see the Perspective by Kelly). The gene’s expression is induced by both light and low-nitrogen status, and it regulates photosynthetic capacity, nitrogen utilization, and flowering time. In field trials, plants overexpressing this gene delivered greater yield, shortened growth duration, and improved nitrogen use efficiency. —PJH Overexpression of a single transcription factor improves the agricultural productivity of rice. INTRODUCTION Rapid population growth, rising meat consumption, and the expanding use of crops for nonfood and nonfeed purposes increase the pressure on global food production. At the same time, the excessive use of nitrogen fertilizer to enhance agricultural production poses serious threats to both human health and the environment. To achieve the required yield increases and make agriculture more sustainable, intensified breeding and genetic engineering efforts are needed to obtain new crop varieties with higher photosynthetic capacity and improved nitrogen use efficiency (NUE). However, progress has been slow, largely due to the limited knowledge about regulator genes that potentially can coordinately optimize carbon assimilation and nitrogen utilization. RATIONALE Transcription factors control diverse biological processes by binding to the promoters (or intragenic regions) of target genes, and a number of transcription factors have been identified that control carbon fixation and nitrogen assimilation. A previous comparative analysis of maize and rice leaf transcriptomes and metabolomes revealed a set of 118 candidate transcription factors that may act as regulators of C4 photosynthesis. We screened these transcription factors for their responsiveness to light and nitrogen supply in rice, and found that the gene Dehydration-Responsive Element-Binding Protein 1C (OsDREB1C), a member of the APETALA2/ethylene-responsive element binding factor (AP2/ERF) family, exhibits properties expected of a regulator that can simultaneously modulate photosynthesis and nitrogen utilization. RESULTS OsDREB1C expression is induced in rice by both light and low-nitrogen status. We generated overexpression lines (OsDREB1C-OE) and knockout mutants (OsDREB1C-KO) in rice, and conducted field trials in northern, southeastern, and southern China from 2018 to 2021. OsDREB1C-OE plants exhibited 41.3 to 68.3% higher yield than wild-type (WT) plants due to increased grain number per panicle, elevated grain weight, and enhanced harvest index. We observed that light-induced growth promotion of OsDREB1C-OE plants was accompanied by enhanced photosynthetic capacity and concomitant increases in photosynthetic assimilates. In addition, 15N feeding experiments and field studies with different nitrogen fertilization regimes revealed that NUE was improved in OsDREB1C-OE plants due to elevated nitrogen uptake and transport activity. Moreover, OsDREB1C overexpression led to more efficient carbon and nitrogen allocation from source to sink, thus boosting grain yield, particularly under low-nitrogen conditions. Additionally, the OsDREB1C-OE plants flowered 13 to 19 days earlier and accumulated higher biomass at the heading stage than WT plants under long-day conditions. OsDREB1C is localized in the nucleus and the cytosol and functions as a transcriptional activator that directly binds to cis elements in the DNA, including dehydration-responsive element (DRE)/C repeat (CRT), GCC, and G boxes. Chromatin immunoprecipitation sequencing (ChIP-seq) and transcriptomic analyses identified a total of 9735 putative OsDREB1C-binding sites at the genome-wide level. We discovered that five genes targeted by OsDREB1C [ribulose-l,5-bisphosphate carboxylase/oxygenase small subunit 3 (OsRBCS3), nitrate reductase 2 (OsNR2), nitrate transporter 2.4 (OsNRT2.4), nitrate transporter 1.1B (OsNRT1.1B), and flowering locus T-like 1 (OsFTL1)] are closely associated with photosynthesis, nitrogen utilization, and flowering, the key traits altered by OsDREB1C overexpression. ChIP-quantitative polymerase chain reaction (ChIP-qPCR) and DNA affinity purification sequencing (DAP-seq) assays confirmed that OsDREB1C activates the transcription of these genes by binding to the promoter of OsRBCS3 and to exons of OsNR2, OsNRT2.4, OsNRT1.1B, and OsFTL1. By showing that biomass and yield increases can also be achieved by OsDREB1C overexpression in wheat and Arabidopsis, we have demonstrated that the mode of action and the biological function of the transcription factor are evolutionarily conserved. CONCLUSION Overexpression of OsDREB1C not only boosts grain yields but also confers higher NUE and early flowering. Our work demonstrates that by genetically modulating the expression of a single transcriptional regulator gene, substantial yield increases can be achieved while the growth duration of the crop is shortened. The existing natural allelic variation in OsDREB1C, the highly conserved function of the transcription factor in seed plants, and the ease with which its expression can be altered by genetic engineering suggest that this gene could be the target of future crop improvement strategies toward more efficient and more sustainable food production. OsDREB1C coordinates yield and growth duration. OsDREB1C was identified by its responsiveness to light and low nitrogen in a screen of 118 transcription factors related to C4 photosynthesis. Transcriptional activation of multiple downstream target genes by OsDREB1C confers enhanced photosynthesis, improved nitrogen utilization, and early flowering. Together, the activated genes cause substantial yield increases in rice and wheat.

58 citations


Journal ArticleDOI
TL;DR: In this article , a review of the physiological functions of K in plants like stomatal regulation, photosynthesis and water uptake is presented, along with its role in detoxification of reactive oxygen species and in conferring tolerance to plants against abiotic stresses.

Journal ArticleDOI
TL;DR: In this paper , active photosynthetic Chlorophyceae (Chlorella, Chl) functionalized with black phosphorus nanosheets (BPNSs) through polyaspartic acid (PASP) and Fe3+ mediating "Lego building method" are utilized for photocatalyzed oxygen-evolving to realize photosynthesis enhanced synergistic photodynamic/chemodynamic/immune therapy.

Journal ArticleDOI
TL;DR: In this paper , the authors discuss the biosynthesis, sensing, signaling, and transport of proline and its role in the development of various plant tissues, including seeds, floral components, and vegetative tissues.
Abstract: Abiotic stresses are the major environmental factors that play a significant role in decreasing plant yield and production potential by influencing physiological, biochemical, and molecular processes. Abiotic stresses and global population growth have prompted scientists to use beneficial strategies to ensure food security. The use of organic compounds to improve tolerance to abiotic stresses has been considered for many years. For example, the application of potential external osmotic protective compounds such as proline is one of the approaches to counteract the adverse effects of abiotic stresses on plants. Proline level increases in plants in response to environmental stress. Proline accumulation is not just a signal of tension. Rather, according to research discussed in this article, this biomolecule improves plant resistance to abiotic stress by rising photosynthesis, enzymatic and non-enzymatic antioxidant activity, regulating osmolyte concentration, and sodium and potassium homeostasis. In this review, we discuss the biosynthesis, sensing, signaling, and transport of proline and its role in the development of various plant tissues, including seeds, floral components, and vegetative tissues. Further, the impacts of exogenous proline utilization under various non-living stresses such as drought, salinity, high and low temperatures, and heavy metals have been extensively studied. Numerous various studies have shown that exogenous proline can improve plant growth, yield, and stress tolerance under adverse environmental factors.

Journal ArticleDOI
TL;DR: In this paper , an inorganic Mo-doped faceted BiVO4 (Mo:BiVO4) system that is resistant to radical oxidation and exhibits a high overall H2O2 photosynthesis efficiency among inorganic photocatalysts was presented.
Abstract: Artificial photosynthesis of H2O2 using earth-abundant water and oxygen is a promising approach to achieve scalable and cost-effective solar fuel production. Recent studies on this topic have made significant progress, yet are mainly focused on using organic polymers. This set of photocatalysts is susceptible to potent oxidants (e.g. hydroxyl radical) that are inevitably formed during H2O2 generation. Here, we report an inorganic Mo-doped faceted BiVO4 (Mo:BiVO4) system that is resistant to radical oxidation and exhibits a high overall H2O2 photosynthesis efficiency among inorganic photocatalysts, with an apparent quantum yield of 1.2% and a solar-to-chemical conversion efficiency of 0.29% at full spectrum, as well as an apparent quantum yield of 5.8% at 420 nm. The surface-reaction kinetics and selectivity of Mo:BiVO4 were tuned by precisely loading CoOx and Pd on {110} and {010} facets, respectively. Time-resolved spectroscopic investigations of photocarriers suggest that depositing select cocatalysts on distinct facet tailored the interfacial energetics between {110} and {010} facets and enhanced charge separation in Mo:BiVO4, therefore overcoming a key challenge in developing efficient inorganic photocatalysts. The promising H2O2 generation efficiency achieved by delicate design of catalyst spatial and electronic structures sheds light on applying robust inorganic particulate photocatalysts to artificial photosynthesis of H2O2.

Journal ArticleDOI
Mengyun Liu1
TL;DR: In this article , a pot experiment was performed to determine the efficacy of zinc oxide nanoparticles (ZnO NPs) as a foliar application on the growth performance of cucumber subjected to drought stress.

Journal ArticleDOI
TL;DR: In a recent study, this article showed that most extant cyanobacteria diversified after the Great Oxidation Event (GOE), an environmental watershed ca. 2.45 bya made possible by oxygenic photosynthesis.

Journal ArticleDOI
TL;DR: In this paper , it was shown that plants attacked by insects, pathogens and other biotic stressors may "purposely" slow down their growth and that this response is often systemic, meaning that it occurs throughout the plant and beyond the tissue that is damaged by pests.

Journal ArticleDOI
TL;DR: In this paper , single particulate photocatalysts, Z-scheme photocatalyst, and photoelectrodes are introduced for artificial photosynthetic CO2 reduction using water as an electron donor under visible light irradiation.
Abstract: Conspectus Photocatalytic and photoelectrochemical CO2 reduction of artificial photosynthesis is a promising chemical process to solve resource, energy, and environmental problems. An advantage of artificial photosynthesis is that solar energy is converted to chemical products using abundant water as electron and proton sources. It can be operated under ambient temperature and pressure. Especially, photocatalytic CO2 reduction employing a powdered material would be a low-cost and scalable system for practical use because of simplicity of the total system and simple mass-production of a photocatalyst material. In this Account, single particulate photocatalysts, Z-scheme photocatalysts, and photoelectrodes are introduced for artificial photosynthetic CO2 reduction. It is indispensable to use water as an electron donor (i.e., reasonable O2 evolution) but not to use a sacrificial reagent of a strong electron donor, for achievement of the artificial photosynthetic CO2 reduction accompanied by ΔG > 0. Confirmations of O2 evolution, a ratio of reacted e– to h+ estimated from obtained products, a turnover number, and a carbon source of a CO2 reduction product are discussed as the key points for evaluation of photocatalytic and photoelectrochemical CO2 reduction. Various metal oxide photocatalysts with wide band gaps have been developed for water splitting under UV light irradiation. However, these bare metal oxide photocatalysts without a cocatalyst do not show high photocatalytic CO2 reduction activity in an aqueous solution. The issue comes from lack of a reaction site for CO2 reduction and competitive reaction between water and CO2 reduction. This raises a key issue to find a cocatalyst and optimize reaction conditions defining this research field. Loading a Ag cocatalyst as a CO2 reduction site and NaHCO3 addition for a smooth supply of hydrated CO2 molecules as reactant are beneficial for efficient photocatalytic CO2 reduction. Ag/BaLa4Ti4O15 and Ag/NaTaO3:Ba reduce CO2 to CO as a main reduction reaction using water as an electron donor even in just water and an aqueous NaHCO3 solution. A Rh–Ru cocatalyst on NaTaO3:Sr gives CH4 with 10% selectivity (Faradaic efficiency) based on the number of reacted electrons in the photocatalytic CO2 reduction accompanied by O2 evolution by water oxidation. Visible-light-responsive photocatalyst systems are indispensable for efficient sunlight utilization. Z-scheme systems using CuGaS2, (CuGa)1–xZn2xS2, CuGa1–xInxS2, and SrTiO3:Rh as CO2-reducing photocatalyst, BiVO4 as O2-evolving photocatalyst, and reduced graphene oxide (RGO) and Co-complex as electron mediator or without an electron mediator are active for CO2 reduction using water as an electron donor under visible light irradiation. These metal sulfide photocatalysts have the potential to take part in Z-scheme systems for artificial photosynthetic CO2 reduction, even though their ability to extract electrons from water is insufficient. A photoelectrochemical system using a photocathode is also attractive for CO2 reduction under visible light irradiation. For example, p-type CuGaS2, (CuGa)1–xZn2xS2, Cu1–xAgxGaS2, and SrTiO3:Rh function as photocathodes for CO2 reduction under visible light irradiation. Moreover, introducing a conducting polymer as a hole transporter and surface modification with Ag and ZnS improve photoelectrochemical performance.

Journal ArticleDOI
TL;DR: In this paper , the authors explored the current knowledge on the impact of salinity on chloroplast operation, metabolism and leaf anatomy, and highlighted the dire consequences for photosynthetic machinery and stomatal conductance.


Journal ArticleDOI
TL;DR: In this article , the authors investigated the degree to which incoming solar radiation and the structure of the canopy rather than leaf physiology contribute to SIF variations and found that the canopy structure-related near-infrared reflectance of vegetation multiplied by incoming sunlight (NIRVP) is a robust proxy for far-red SIF across a wide range of spatial and temporal scales.

Journal ArticleDOI
TL;DR: In this paper , the potential strategies that photosynthetic pigments provide, coupled with development of molecular biological techniques, to improve crop yields through enhanced light harvesting, increased photoprotection and improved photoynthetic efficiency.
Abstract: Photosynthetic pigments are an integral and vital part of all photosynthetic machinery and are present in different types and abundances throughout the photosynthetic apparatus. Chlorophyll, carotenoids and phycobilins are the prime photosynthetic pigments which facilitate efficient light absorption in plants, algae, and cyanobacteria. The chlorophyll family plays a vital role in light harvesting by absorbing light at different wavelengths and allowing photosynthetic organisms to adapt to different environments, either in the long-term or during transient changes in light. Carotenoids play diverse roles in photosynthesis, including light capture and as crucial antioxidants to reduce photodamage and photoinhibition. In the marine habitat, phycobilins capture a wide spectrum of light and have allowed cyanobacteria and red algae to colonise deep waters where other frequencies of light are attenuated by the water column. In this review, we discuss the potential strategies that photosynthetic pigments provide, coupled with development of molecular biological techniques, to improve crop yields through enhanced light harvesting, increased photoprotection and improved photosynthetic efficiency.

Journal ArticleDOI
TL;DR: In this article , a novel conversion strategy was proposed by coupling microalgal photosynthesis with DF, which was capable of reclaiming nutrients and organics from landfill leachate to produce bio-hydrogen and VFAs relying on robust microalgae coupled with DF.

Journal ArticleDOI
TL;DR: In this paper, a blue light (465 nm) emission after ultraviolet (380 nm) excitation into the microalgae growth media was demonstrated that the ultraviolet light was effectively absorbed and utilized by the chlorophyll in the GOQDs-Chlorella pyrenoidosa system, resulting in a significantly increased photosynthetic activity.

Journal ArticleDOI
TL;DR: In this paper , a blue light (465 nm) emission after ultraviolet (380 nm) excitation into the microalgae growth media was demonstrated that the ultraviolet light was effectively absorbed and utilized by the chlorophyll in the GOQDs-Chlorella pyrenoidosa system, resulting in significantly increased photosynthetic activity.

Journal ArticleDOI
Yanhui Ao1, Yuangang Xu1
TL;DR: In this article , a sulfuric acid exfoliated C3N4 (S-CN) was found to be efficient for algae inactivation under visible light irradiation (92% removal rate within 3.5 h).

Journal ArticleDOI
TL;DR: This review focuses on a comprehensive study of melatonin-induced physiological and molecular events in horticultural crops, which are important to the development of tolerance and enhancement of productivity in hortsicultural crops under abiotic stress conditions.

Journal ArticleDOI
TL;DR: In this article , the authors show that the combined action of cyclic electron flow and O2 photoreduction, which depend on PGRL1 and flavodiiron proteins, respectively, generate a low luminal pH that is essential for CCM function.
Abstract: Global photosynthesis consumes ten times more CO2 than net anthropogenic emissions, and microalgae account for nearly half of this consumption1. The high efficiency of algal photosynthesis relies on a mechanism concentrating CO2 (CCM) at the catalytic site of the carboxylating enzyme RuBisCO, which enhances CO2 fixation2. Although many cellular components involved in the transport and sequestration of inorganic carbon have been identified3,4, how microalgae supply energy to concentrate CO2 against a thermodynamic gradient remains unknown4-6. Here we show that in the green alga Chlamydomonas reinhardtii, the combined action of cyclic electron flow and O2 photoreduction-which depend on PGRL1 and flavodiiron proteins, respectively-generate a low luminal pH that is essential for CCM function. We suggest that luminal protons are used downstream of thylakoid bestrophin-like transporters, probably for the conversion of bicarbonate to CO2. We further establish that an electron flow from chloroplast to mitochondria contributes to energizing non-thylakoid inorganic carbon transporters, probably by supplying ATP. We propose an integrated view of the network supplying energy to the CCM, and describe how algal cells distribute energy from photosynthesis to power different CCM processes. These results suggest a route for the transfer of a functional algal CCM to plants to improve crop productivity.

Journal ArticleDOI
TL;DR: In this article , the authors explore means to further accelerate these adjustments and minimize these losses through transgenic manipulation, gene editing, and exploitation of natural variation, specifically nonphotochemical quenching (NPQ), Rubisco activation, and stomatal responses.
Abstract: Photosynthesis is an important remaining opportunity for further improvement in the genetic yield potential of our major crops. Measurement, analysis, and improvement of leaf CO2 assimilation (A) have focused largely on photosynthetic rates under light-saturated steady-state conditions. However, in modern crop canopies of several leaf layers, light is rarely constant, and the majority of leaves experience marked light fluctuations throughout the day. It takes several minutes for photosynthesis to regain efficiency in both sun-shade and shade-sun transitions, costing a calculated 10-40% of potential crop CO2 assimilation. Transgenic manipulations to accelerate the adjustment in sun-shade transitions have already shown a substantial productivity increase in field trials. Here, we explore means to further accelerate these adjustments and minimize these losses through transgenic manipulation, gene editing, and exploitation of natural variation. Measurement andanalysis of photosynthesis in sun-shade and shade-sun transitions are explained. Factors limiting speeds of adjustment and how they could be modified to effect improved efficiency are reviewed, specifically nonphotochemical quenching (NPQ), Rubisco activation, and stomatal responses.

Journal ArticleDOI
TL;DR: In this article , the authors evaluated morphological and physiological responses of two wheat varieties exposed to a broad range of Zn concentrations (0-1000 μM) for 14 days.