scispace - formally typeset
Search or ask a question
Topic

Photosynthesis

About: Photosynthesis is a research topic. Over the lifetime, 19789 publications have been published within this topic receiving 895197 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: It is speculated that increased accumulation of carbohydrate in leaves developed at elevated ca may signal the ‘down regulation’ of Rubisco, and a molecular model is used to predict patterns of acclimation of perennials to long term growth in elevated ca.
Abstract: In this review we discuss how the photosynthetic apparatus, particularly Rubisco, acclimates to rising atmospheric CO2 concentrations (ca). Elevated ca alters the control exerted by different enzymes of the Calvin cycle on the overall rate of photosynthetic CO2 assimilation, so altering the requirement for different functional proteins. A decreased flux of carbon through the photorespiratory pathway will decrease requirements for these enzymes. From modeling of the response of CO2 uptake (A) to intracellular CO2 concentration (ci) it is shown that the requirement for Rubisco is decreased at elevated ca, whilst that for proteins limiting ribulose 1,5 bisphosphate regeneration may be increased. This balance may be altered by other interactions, in particular plasticity of sinks for photoassimilate and nitrogen supply; hypotheses on these interactions are presented. It is speculated that increased accumulation of carbohydrate in leaves developed at elevated ca may signal the ‘down regulation’ of Rubisco. The molecular basis of this ‘down regulation’ is discussed in terms of the repression of photosynthetic gene expression by the elevated carbohydrate concentrations. This molecular model is then used to predict patterns of acclimation of perennials to long term growth in elevated ca.

217 citations

Journal ArticleDOI
TL;DR: This review starts by explaining how light energy can be dissipated or distributed by the various mechanisms of non-photochemical quenching, including thermal dissipation and state transitions, and how these processes influence photoinhibition of photosystem II (PSII).
Abstract: Photosynthetic organisms and isolated photosystems are of interest for technical applications. In nature, photosynthetic electron transport has to work efficiently in contrasting environments such as shade and full sunlight at noon. Photosynthetic electron transport is regulated on many levels, starting with the energy transfer processes in antenna and ending with how reducing power is ultimately partitioned. This review starts by explaining how light energy can be dissipated or distributed by the various mechanisms of non-photochemical quenching, including thermal dissipation and state transitions, and how these processes influence photoinhibition of photosystem II (PSII). Furthermore, we will highlight the importance of the various alternative electron transport pathways, including the use of oxygen as the terminal electron acceptor and cyclic flow around photosystem I (PSI), the latter which seem particularly relevant to preventing photoinhibition of photosystem I. The control of excitation pressure in combination with the partitioning of reducing power influences the light-dependent formation of reactive oxygen species in PSII and in PSI, which may be a very important consideration to any artificial photosynthetic system or technical device using photosynthetic organisms.

217 citations

Journal ArticleDOI
TL;DR: It is concluded that compensatory photosynthesis does not appear to be an important ecological component of herbivory tolerance for these species.
Abstract: The occurrence of compensatory photosynthesis was examined in the field for all foliage elements on two Agropyron bunchgrass species that differ in their evolutionary history of grazing pressure. This is the first reported field study of compensatory photosynthesis in individual foliage elements of graminoids. Compensatory photosynthesis was defined as an increase in the photosynthetic rates of foliage on partially defoliated plants relative to foliage of the same age on undefoliated plants. Compensatory photosynthesis did occur in many individual foliage elements during at least part of their ontogeny. For both species, compensatory photosynthesis was related primarily to delayed leaf senescence and increased soluble protein concentrations, but not to an improvement in the water status of clipped plants. Soluble protein concentration increased in all foliage elements. A delay in senescence on clipped plants was documented for the two oldest, fully-expanded leaves that were present when the plants were initially clipped, but the initiation and senescence of all other foliage elements were not affected by the clipping treatments. Photosynthetic water use efficiency and photosynthetic rates per unit soluble protein of foliage on partially defoliated plants were not increased following the clipping treatments. Although A. desertorum and A. spicatum were exposed to different levels of grazing pressure during their evolutionary history, the phenology, water status, and gas exchange rates of foliage were very similar both for undefoliated as well as partially defoliated plants. Thus, we conclude that compensatory photosynthesis does not appear to be an important ecological component of herbivory tolerance for these species.

217 citations

Book ChapterDOI
02 Nov 2015

217 citations

Journal ArticleDOI
TL;DR: In cyanobacteria photoprotectants such as mycosporine-like amino acids (MAAs) and scytonemin strongly absorb in the UV-A and/or UV-B region of the spectrum, and thus play an important role in allowing these organisms to grow and survive in habitats exposed to strong irradiation.

216 citations


Network Information
Related Topics (5)
Shoot
32.1K papers, 693.3K citations
89% related
Arabidopsis thaliana
19.1K papers, 1M citations
89% related
Arabidopsis
30.9K papers, 2.1M citations
87% related
Germination
51.9K papers, 877.9K citations
87% related
Hordeum vulgare
20.3K papers, 717.5K citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20242
20232,453
20225,090
2021738
2020732
2019616