scispace - formally typeset
Search or ask a question
Topic

Photosynthesis

About: Photosynthesis is a research topic. Over the lifetime, 19789 publications have been published within this topic receiving 895197 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: It is concluded that high salinity reduces photosynthesis in leaves of B. parviflora primarily by reducing diffusion of CO2 to the chloroplast, both by stomatal closure and by changes in mesophyll structure, which decreased the conductance to CO2 within the leaf, as well as by affecting the photochemistry of the leaves.
Abstract: The effects of a range of salinity (0, 100, 200 and 400 mM NaCl) on growth, ion accumulation, photosynthesis and anatomical changes of leaves were studied in the mangrove, Bruguiera parviflora of the family Rhizophoraceae under hydroponically cultured conditions. The growth rates measured in terms of plant height, fresh and dry weight and leaf area were maximal in culture treated with 100 mM NaCl and decreased at higher concentrations. A significant increase of Na+ content of leaves from 46.01 mmol m-2 in the absence of NaCl to 140.55 mmol m-2 in plants treated with 400 mM NaCl was recorded. The corresponding Cl- contents were 26.92 mmol m-2 and 97.89 mmol m-2. There was no significant alteration of the endogenous level of K+ and Fe2+ in leaves. A drop of Ca2+ and Mg2+ content of leaves upon salt accumulation suggests increasing membrane stability and decreased chlorophyll content respectively. Total chlorophyll content decreased from 83.44 μg cm-2 in untreated plants to 46.56 μg cm-2 in plants treated with 400 mM NaCl, suggesting that NaCl has a limiting effect on photochemistry that ultimately affects photosynthesis by inhibiting chlorophyll synthesis (ca. 50% loss in chlorophyll). Light-saturated rates of photosynthesis decreased by 22% in plants treated with 400 mM NaCl compared with untreated plants. Both mesophyll and stomatal conductance by CO2 diffusion decreased linearly in leaves with increasing salt concentration. Stomatal and mesophyll conductance decreased by 49% and 52% respectively after 45 days in 400 mM NaCl compared with conductance in the absence of NaCl. Scanning electron microscope study revealed a decreased stomatal pore area (63%) in plants treated with 400 mM NaCl compared with untreated plants, which might be responsible for decreased stomatal conductance. Epidermal and mesophyll thickness and intercellular spaces decreased significantly in leaves after treatment with 400 mM NaCl compared with untreated leaves. These changes in mesophyll anatomy might have accounted for the decreased mesophyll conductance. We conclude that high salinity reduces photosynthesis in leaves of B. parviflora, primarily by reducing diffusion of CO2 to the chloroplast, both by stomatal closure and by changes in mesophyll structure, which decreased the conductance to CO2 within the leaf, as well as by affecting the photochemistry of the leaves.

388 citations

Journal ArticleDOI
01 Feb 2002-Planta
TL;DR: It is suggested that, under S-deprivation conditions, electrons derived from a residual PSII H2O-oxidation activity feed into the hydrogenase pathway, thereby contributing to the H2-production process in Chlamydomonas reinhardtii.
Abstract: Sulfur deprivation in green algae causes reversible inhibition of photosynthetic activity. In the absence of S, rates of photosynthetic O2 evolution drop below those of O2 consumption by respiration. As a consequence, sealed cultures of the green alga Chlamydomonas reinhardtii become anaerobic in the light, induce the "Fe-hydrogenase" pathway of electron transport and photosynthetically produce H2 gas. In the course of such H2-gas production cells consume substantial amounts of internal starch and protein. Such catabolic reactions may sustain, directly or in directly, the H2-production process. Profile analysis of selected photosynthetic proteins showed a precipitous decline in the amount of ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco) as a function of time in S deprivation, a more gradual decline in the level of photosystem (PS) II and PSI proteins, and a change in the composition of the PSII light-harvesting complex (LHC-II). An increase in the level of the enzyme Fe-hydrogenase was noted during the initial stages of S deprivation (0-72 h) followed by a decline in the level of this enzyme during longer (t >72 h) S-deprivation times. Microscopic observations showed distinct morphological changes in C. reinhardtii during S deprivation and H2 production. Ellipsoid-shaped cells (normal photosynthesis) gave way to larger and spherical cell shapes in the initial stages of S deprivation and H2 production, followed by cell mass reductions after longer S-deprivation and H2-production times. It is suggested that, under S-deprivation conditions, electrons derived from a residual PSII H2O-oxidation activity feed into the hydrogenase pathway, thereby contributing to the H2-production process in Chlamydomonas reinhardtii. Interplay between oxygenic photosynthesis, mitochondrial respiration, catabolism of endogenous substrate, and electron transport via the hydrogenase pathway is essential for this light-mediated H2-production process.

388 citations

Journal ArticleDOI
TL;DR: Evidence suggests that early and perhaps later chemical reactions in photosynthesis may be partially reversible.
Abstract: 1. Green plants have been found to emit light of approximately the same color as their fluorescent light for several minutes following illumination. This light is about 10–3 the intensity of the fluorescent light, about one-tenth second after illumination below saturation or 10–6 of the intensity of the absorbed light. 2. The decay curve follows bimolecular kinetics at 6.5°C. and reaction order 1.6 at 28°C. 3. This light saturates as does photosynthesis at higher light intensities and in about the same intensity range as does photosynthesis. 4. An action spectrum for light emitted as a function of the wave length of exciting light has been determined. It parallels closely the photosynthetic action spectrum. 5. The intensity of light emission was studied as a function of temperature and found to be optimal at about 37°C. with an activation energy of approximately 19,500 calories. Two-temperature studies indicated that the energy may be trapped in the cold, but that temperatures characteristic for enzymatic reactions are necessary for light production. 6. Illumination after varying dark periods showed initial peaks of varying height depending on the preceding dark period. 7. 5 per cent CO2 reversibly depresses the amount of light emitted by about 30 per cent. About 3 minutes are required for this effect to reach completion at room temperatures. 8. Various inhibitors of photosynthesis were tested for their effect on luminescence and were all inhibitory at appropriate concentrations. 9. Irradiation with ultraviolet light (2537A) inhibits light production at about the same rate as it inhibits photosynthesis. 10. This evidence suggests that early and perhaps later chemical reactions in photosynthesis may be partially reversible.

388 citations

Journal ArticleDOI
Fashui Hong1, Juan Zhou1, Chao Liu1, Fan Yang1, Cheng Wu1, Lei Zheng1, Ping Yang1 
TL;DR: It is suggested that photosynthesis promoted by nano-TiO2 might be related to activation of photochemical reaction of chloroplasts of spinach.
Abstract: The effects of nano-TiO2 (rutile) on the photochemical reaction of chloroplasts of spinach were studied. The results showed that when spinach was treated with 0.25% nano-TiO2, the Hill reaction, such as the reduction rate of FeCy, and the rate of evolution oxygen of chloroplasts was accelerated and noncyclic photophosphorylation (nc-PSP) activity of chloroplasts was higher than cyclic photophosphorylation (c-PSP) activity, the chloroplast coupling was improved and activities of Mg2+-ATPase and chloroplast coupling factor I (CF1)-ATPase on the thylakoid membranes were obviously activated. It suggested that photosynthesis promoted by nano-TiO2 might be related to activation of photochemical reaction of chloroplasts of spinach.

387 citations

Journal ArticleDOI
TL;DR: The contrasting view that the cycle can participate directly in photosynthesis, such as in oxygen evolution, is discussed, and a model showing the various relationships of the cycle to photosynthesis is presented.
Abstract: The biochemistry of the violaxanthin cycle in relationship to photosynthesis is reviewed. The cycle is a component of the thylakoid and consists of a reaction sequence in which violaxanthin is converted to zeaxanthin (de-epoxidation) and then regenerated (epoxidation) through separate reaction mechanisms. The arrangement of the cycle in the thylakoid is transmembranous with the de-epoxidation system situated on the loculus side and epoxidation on the outer side of the membrane. Photosynthetic activities affect turnover of the cycle but the cycle itself consists entirely of dark reactions. Light has at least two roles in de-epoxidation. It establishes through the proton pump the acidic pH in the loculus that is required for de-epoxidase activity and it induces a presumed conformational change in the inner membrane surface which determines the fraction of violaxanthin in the membrane that enters the cycle. De-epoxidation, which requires ascorbate, is presumed to proceed by a reductive-dehydration mechanism. Non-cyclic electron transport can provide the required reducing potential through the dehydroascorbate-ascorbate couple. Whether ascorbate reduces the de-epoxidase system directly or through an intermediate has not been settled. Epoxidation requires NADPH and O2 which suggests a reductive mechanism. In contrast with de-epoxidation, it has a pH optimum near neutrality. The coupling of photosynthetically generated NADPH to epoxidation has been shown. Turnover of the cycle under optimal conditions is estimated to be about two orders of magnitude below optimal electron transport rates. This low rate appears to exclude a direct role of the cycle in photosynthesis or a role in significantly affecting photosynthate levels in a back reaction. The fact that the cycle is sensitive to events both before and after Photosystem I suggests a regulatory role, possibly through effects on membrane properties. A model showing the various relationships of the cycle to photosynthesis is presented. The contrasting view that the cycle can participate directly in photosynthesis, such as in oxygen evolution, is discussed. Violaxanthin de-epoxidase has been purified. It is a lipoprotein which contains monogalactosyldiglyceride (MG) exclusively. The enzyme is a mono-de-epoxidase which is specific for 3-OH, 5–6-epoxy carotenoids that are in a 3R , 5S , 6R configuration. In addition, the polyene chain must be all- trans . A model has been presented which depicts enzymic MG in a receptor role and the stereospecific active center situated in a narrow well-like depression that can accommodate only the all- trans structure.

385 citations


Network Information
Related Topics (5)
Shoot
32.1K papers, 693.3K citations
89% related
Arabidopsis thaliana
19.1K papers, 1M citations
89% related
Arabidopsis
30.9K papers, 2.1M citations
87% related
Germination
51.9K papers, 877.9K citations
87% related
Hordeum vulgare
20.3K papers, 717.5K citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20242
20232,453
20225,090
2021738
2020732
2019616