scispace - formally typeset
Search or ask a question
Topic

Phylogenetic tree

About: Phylogenetic tree is a research topic. Over the lifetime, 26643 publications have been published within this topic receiving 1340967 citations. The topic is also known as: evolutionary tree & evolutionary diagram.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors introduce a new approach to perform relaxed phylogenetic analysis, which can be used to estimate phylogenies and divergence times in the face of uncertainty in evolutionary rates and calibration times.
Abstract: In phylogenetics, the unrooted model of phylogeny and the strict molecular clock model are two extremes of a continuum. Despite their dominance in phylogenetic inference, it is evident that both are biologically unrealistic and that the real evolutionary process lies between these two extremes. Fortunately, intermediate models employing relaxed molecular clocks have been described. These models open the gate to a new field of “relaxed phylogenetics.” Here we introduce a new approach to performing relaxed phylogenetic analysis. We describe how it can be used to estimate phylogenies and divergence times in the face of uncertainty in evolutionary rates and calibration times. Our approach also provides a means for measuring the clocklikeness of datasets and comparing this measure between different genes and phylogenies. We find no significant rate autocorrelation among branches in three large datasets, suggesting that autocorrelated models are not necessarily suitable for these data. In addition, we place these datasets on the continuum of clocklikeness between a strict molecular clock and the alternative unrooted extreme. Finally, we present analyses of 102 bacterial, 106 yeast, 61 plant, 99 metazoan, and 500 primate alignments. From these we conclude that our method is phylogenetically more accurate and precise than the traditional unrooted model while adding the ability to infer a timescale to evolution.

5,812 citations

Book
15 Aug 2000
TL;DR: This chapter discusses the molecular basis of evolution, the evolution of organisms based on the fossil record, and the implications of these events for phylogenetic inference.
Abstract: 1. Molecular basis of evolution 2. Evolutionary changes of amino acid sequences 3. Evolutionary changes of DNA sequences 4. Synonymous and nonsynonymous nucleotide substitutions 5. Phylogenetic trees 6. Phylogenetic inference: Distance methods 7. Phylogenetic inference: Maximum parsimony methods 8. Phylogenetic inference: Maximum likelihood methods 9. Accuracies and statistical tests of phylogenetic trees 10. Molecular clocks and linearized trees 11. Ancestral nucleotide and amino acid sequences 12. Genetic polymorphism and evolution 13. Population trees from genetic markers 14. Perspectives Appendices A. Mathematical sumbols and notations B. Geological timescale C. Geological events in the Cenozoic and Meszoic eras D. Evolution of organisms based on the fossil record

5,629 citations

Journal ArticleDOI
TL;DR: Molecular processes are reviewed, the correction of genetic distances and the weighting of DNA data are discussed, and an assessment of the phylogenetic usefulness of specific mitochondrial genes is provided.
Abstract: DNA-sequence data from the mitochondrial genome are being used with increasing frequency to estimate phylogenetic relationships among animal taxa. The advantage to using DNA-sequence data is that many of the processes governing the evolution and inheritance of DNA are already understood. DNA data, however, do not guarantee the correct phylogenetic tree because of problems associated with shared ancestral polymorphisms and multiple substitutions at single nucleotide sites. Knowledge of evolutionary processes can be used to improve estimates of patterns of relationships and can help to assess the phylogenetic usefulness of individual genes and nucleotides. This article reviews molecular processes, discusses the correction of genetic distances and the weighting of DNA data, and provides an assessment of the phylogenetic usefulness of specific mitochondrial genes. The Appendix presents a compilation of conserved polymerase chain reaction primers that can be used to amplify virtually any gene in the mitochondrial genome. DNA data sets vary tremendously in degree of phylogenetic usefulness. Correction or weighting (or both) of DNA-sequence data based on level of variability can improve results in some cases. Gene choice is of critical importance. For studies of relationships among closely related species, the use of ribosomal genes can be problematic, whereas unconstrained sites in protein coding genes appear to have fewer problems. In addition, information from studies of amino acid substitutions in rapidly evolving genes may help to decipher close relationships. For intermediate levels of divergence where silent sites contain many multiple hits, amino acid changes can be useful for construction phylogenetic relationships. For deep levels of divergence, protein coding genes may be saturated at the amino acid level and highly conserved regions of ribosomal RNA and transfer RNA genes may be useful. Because of the arbitrariness of taxonomic categories, no sweeping generalizations can be made about the taxonomic rank at which particular genes are useful. As more DNA-sequence data accumulate, we will be able to gain an even better understanding of the way in which genes and species evolve.

5,623 citations

Journal ArticleDOI
TL;DR: The strength of PAML, in comparison with other phylogenetic packages currently available, is its implementation of a variety of evolutionary models, which include several models of variable evolutionary rates among sites, models for combined analyses of multiple gene sequence data and models for amino acid sequences.
Abstract: PAML, currently in version 1.2, is a package of programs for phylogenetic analyses of DNA and protein sequences using the method of maximum likelihood (ML). The programs can be used for (i) maximum likelihood estimation of evolutionary parameters such as branch lengths in a phylogenetic tree, the transition/transversion rate ratio, the shape parameter of the gamma distribution for variable evolutionary rates at sites, and rate parameters for different genes; (ii) likelihood ratio test of hypotheses concerning sequence evolution, such as rate constancy and independence among sites and rate constancy among lineages (the molecular clock); (iii) calculation of substitution rates at sites and reconstruction of ancestral nucleotide or amino acid sequences; and (iv) phylogenetic tree reconstruction by maximum likelihood and Bayesian methods. The strength of PAML, in comparison with other phylogenetic packages currently available, is its implementation of a variety of evolutionary models. These include several models of variable evolutionary rates among sites, models for combined analyses of multiple gene sequence data and models for amino acid sequences. Multifurcating trees are supported, as well as trees in which some sequences are ancestral to some others. A heuristic tree search algorithm (star decomposition) is used in the package, but tree making is not a strong point of the current version, although work is under way to implement efficient search algorithms. Major programs in the package, as well as the types of analyses they perform, are listed in Table 1. More details are available in the documentation included in the package, written using Microsoft Word. PAML is distributed free of charge for academic use only. The package, including ANSI C source codes, documentation, example data sets, and control files, can be obtained by anonymous ftp at mw511.biol.berkeley.edu/pub, or from the Indiana molecular biology ftp site at ftp.bio.indiana.edu under the directory Incoming or molbio/evolve . MAC and PowerMac executables are also available, although DOS executables are not prepared yet. Further information about the package is available from the World Wide Web at

5,022 citations

01 Jan 1989
TL;DR: This paper used the polymerase chain reaction to amplify homologous segments of mtDNA from more than 100 animal species, including mammals, birds, amphibians, fishes, and some invertebrates.
Abstract: With a standard set of primers directed toward conserved regions, we have used the polymerase chain reaction to amplify homologous segments ofmtDNA from more than 100 animal species, including mammals, birds, amphib- ians, fishes, and some invertebrates. Amplification and direct sequencing were possible using unpurified mtDNA from nano- gram samples of fresh specimens and microgram amounts of tissues preserved for months in alcohol or decades in the dry state. The bird and fish sequences evolve with the same strong bias toward transitions that holds for mammals. However, because the light strand of birds is deficient in thymine, thymine to cytosine transitions are less common than in other taxa. Amino acid replacement in a segment of the cytochrome b gene is faster in mammals and birds than in fishes and the pattern of replacements fits the structural hypothesis for cytochrome b. The unexpectedly wide taxonomic utility ofthese primers offers opportunities for phylogenetic and population research.

4,367 citations


Network Information
Related Topics (5)
Phylogenetics
12.7K papers, 800.2K citations
98% related
Genome
74.2K papers, 3.8M citations
90% related
Sequence analysis
24.1K papers, 1.3M citations
89% related
Ribosomal RNA
21.4K papers, 984.8K citations
89% related
Genetic diversity
42.8K papers, 873.4K citations
88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20233,929
20228,688
20211,425
20201,405
20191,330
20181,299