scispace - formally typeset
Search or ask a question
Topic

Physical optics

About: Physical optics is a research topic. Over the lifetime, 5342 publications have been published within this topic receiving 101388 citations. The topic is also known as: wave optics.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the nature of light, extending from the optical to the x-ray regime, is reviewed from a diffraction point of view by comparing field-based statistical optics and photon-based quantum optics approaches.
Abstract: The nature of light, extending from the optical to the x-ray regime, is reviewed from a diffraction point of view by comparing field-based statistical optics and photon-based quantum optics approaches. The topic is introduced by comparing historical diffraction concepts based on wave interference, Dirac’s notion of photon self-interference, Feynman’s interference of space–time photon probability amplitudes, and Glauber’s formulation of coherence functions based on photon detection. The concepts are elucidated by a review of how the semiclassical combination of the disparate photon and wave concepts have been used to describe light creation, diffraction, and detection. The origin of the fundamental diffraction limit is then discussed in both wave and photon pictures. By use of Feynman’s concept of probability amplitudes associated with independent photons, we show that quantum electrodynamics, the complete theory of light, reduces in lowest order to the conventional wave formalism of diffraction. As an introduction to multi-photon effects, we then review fundamental one- and two-photon experiments and detection schemes, in particular the seminal Hanbury Brown–Twiss experiment. The formal discourse of the paper starts with a treatment of first-order coherence theory. In first order, the statistical optics and quantum optics formulations of coherence are shown to be equivalent. This is elucidated by a discussion of Zernike’s powerful theorem of partial coherence propagation, a cornerstone of statistical optics, followed by its quantum derivation based on the interference of single-photon probability amplitudes. The treatment is then extended to second-order coherence theory, where the equivalence of wave and particle descriptions is shown to break down. This is illustrated by considering two photons whose space–time probability amplitudes are correlated through nonlinear birth processes, resulting in entanglement or cloning. In both cases, the two-photon diffraction patterns are shown to exhibit resolution below the conventional diffraction limit, defined by the one-photon diffraction patterns. The origin of the reduction is shown to arise from the interference of two-photon probability amplitudes. By comparing first- and second-order diffraction, it is shown that the conventional first-order concept of partial coherence with its limits of chaoticity and first-order coherence has the second-order analogue of partial entanglement, with its limits corresponding to two entangled photons (“entangled biphotons”) and two cloned photons (“cloned biphotons”), the latter being second-order coherent. The concept of cloned biphotons is extended to the case of n cloned photons, resulting in a 1/n reduction of the diffraction limit. In the limit of nth-order coherence, all photons within the nth-order collective state are shown to propagate on particle like trajectories, reproducing the 0th-order ray-optics picture. These results are discussed in terms of the linearity of quantum mechanics and Heisenberg’s space–momentum uncertainty principle. A general concept of coherence based on photon density is developed that in first order is equivalent to the conventional wave-based picture.

25 citations

Journal ArticleDOI
TL;DR: In this article, the unknown induced current is expressed in terms of the known physical optics solution of the unperturbed problem of scattering by an infinite conducting plane plus a yet to be determined localized correction current placed in the vicinity of the groove.
Abstract: A novel method is presented to solve the two-dimensional (2-D) problem of scattering of an electromagnetic plane wave by a groove in a perfectly conducting infinite plane. In this method, the unknown induced current is expressed in terms of the known physical optics solution of the unperturbed problem of scattering by an infinite conducting plane plus a yet to be determined localized correction current placed in the vicinity of the groove. It is then shown that a good approximation of the induced current can be obtained using only a few dominant functions in the wavelet expansion of the correction current. Moreover, the same set of dominant wavelet functions serves the purpose of approximating the induced current at different angles of incidence. A numerical example demonstrates these various features of the proposed method of solution.

25 citations

Proceedings ArticleDOI
06 Feb 2002
TL;DR: In this article, the authors describe the purpose, theory, implementation and sample results of a wave optics propagation simulation developed to study multi-conjugate adaptive optics (MCAQ) for 4-10m class telescopes.
Abstract: We describe the purpose, theory, implementation and sample results of a wave optics propagation simulation developed to study multi-conjugate adaptive optics (MCAQ) for 4-10m class telescopes. This code was more specifically developed to assess the impact of diffraction effects and a variety of implementation error sources upon the performance of the Gemini-South MCAO system. These errors include: Hartmann sensing with extended and elongated laser guide stars, optical propagation effects through the optics and atmosphere, laser guide star (LGS) projection through the atmosphere, deformable mirror (DM) and wave front sensor (WFS) misregistration, and calibration for non-common path errors. The code may be run in either a wave optics or geometric propagation mode to allow the code to be anchored against linear analytical models and to explicitly evaluate the impact of diffraction effects. The code is written in MATLAB, and complete simulations of the Gemini-South MCAO design (including 3 deformable mirrors with 769 actuators, 5 LGS WFS with 1020 subapertures, 3 tip/tilt natural guide star (NGS) WFS, and 50 meter phase screens with 1/32nd meter resolution) are possible using a Pentium III but require 1 to 6 days. Sample results are presented for Gemini-South MCAO as well as simpler AO systems. Several possibilities for parallelizing the code for faster execution and the modeling of extremely large telescopes (ELT's) are discussed.

25 citations

Journal ArticleDOI
TL;DR: An analytical solution is proposed that allows the optical system to be designed without the need of any ray-tracing software and allows one to reach a larger numerical aperture and hence a better resolution compared with the standard configuration of the Schwarzschild optics.
Abstract: An innovative solution for the Schwarzschild optic, based on a modification of the position of the object, is proposed. This solution allows one to reach a larger numerical aperture and hence a better resolution compared with the standard configuration of the Schwarzschild optics. Furthermore, we propose an analytical solution that allows the optical system to be designed without the need of any ray-tracing software.

25 citations


Network Information
Related Topics (5)
Resonator
76.5K papers, 1M citations
88% related
Optical fiber
167K papers, 1.8M citations
83% related
Antenna (radio)
208K papers, 1.8M citations
83% related
Scattering
152.3K papers, 3M citations
81% related
Amplifier
163.9K papers, 1.3M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202357
2022157
202196
2020140
2019141
2018162