scispace - formally typeset
Search or ask a question
Topic

Phytoalexin

About: Phytoalexin is a research topic. Over the lifetime, 1161 publications have been published within this topic receiving 63405 citations. The topic is also known as: phytoalexins.


Papers
More filters
Journal ArticleDOI
TL;DR: This strategy for determining cellular phytoalexin concentrations is applicable to other host/pathogen systems for which there is a means of determining which cells contain phy toalxin.

21 citations

Journal ArticleDOI
TL;DR: Evidence that sakuranetin acts as anti-inflammatory flavonoid is found and further study is required to evaluate its in vivo efficacy.
Abstract: Sakuranetin is flavonoid phytoalexin that serves as a plant antibiotic and exists in Prunus and several other plant species. Recently, we identified the anti-inflammatory effect of Prunus yedoensis and found that there were few studies on the potential anti-inflammatory activity of sakuranetin, one of the main constituents of Prunus yedoensis. Here, we isolated peritoneal macrophages from thioglycollate-injected mice and examined whether sakuranetin affected the response of the macrophages in response to lipopolysaccharide (LPS) plus interferon- (IFN-) γ or LPS only. Sakuranetin suppressed the synthesis of iNOS and COX2 in LPS/IFN-γ stimulated cells and the secretion of TNF-α, IL-6, and IL-12 in LPS stimulated cells. The surface expression of the costimulatory molecules, CD86 and CD40, was also decreased. Among the LPS-induced signaling molecules, STAT1, JNK, and p38 phosphorylation was attenuated. These findings are evidence that sakuranetin acts as anti-inflammatory flavonoid and further study is required to evaluate its in vivo efficacy.

21 citations

Journal ArticleDOI
TL;DR: The pharmacokinetic behavior of allixin (3-hydroxy-5-methoxy-6-methyl-2-penthyl-4H-pyran-4-one) was investigated in an experimental animal, mice and the chemical structure of the metabolites was investigated using LC-MS and NMR.
Abstract: The pharmacokinetic behavior of allixin (3-hydroxy-5-methoxy-6-methyl-2-penthyl-4H-pyran-4-one) was investigated in an experimental animal, mice. Allixin was administered using an inclusion compound because the solubility of allixin in aqueous solution is very low. The allixin content in serum and in the organs of administered animals was analyzed by liquid chromatography (LC)-MS. Most of the administered allixin disappeared within 2 h, and the bioavailability of allixin was estimated to be 31% by obtained area under the blood concentration-time curve (AUC). The metabolites of allixin were studied using the metabolic enzyme fraction of liver and liver homogenate. Several new peaks corresponding to allixin metabolites were observed in the HPLC chromatoprofile. The chemical structure of the metabolites was investigated using LC-MS and NMR. Three of them were identified as allixin metabolites having a hydroxylated pentyl group.

21 citations

Journal ArticleDOI

21 citations

Journal ArticleDOI
TL;DR: This work investigated the activity of CAO-1, assuming that it may provide retinal, the chromophore of the NOP-1 rhodopsin, by cleaving β-carotene, and confirmed its biological function in converting stilbenes, adding resveratrol led to a pronounced increase in cao-1 mRNA levels, while light, a key regulator of carotenoid metabolism, did not alter them.
Abstract: The genome of the ascomycete Neurospora crassa encodes CAO-1 and CAO-2, two members of the carotenoid cleavage oxygenase family that target double bonds in different substrates. Previous studies demonstrated the role of CAO-2 in cleaving the C40 carotene torulene, a key step in the synthesis of the C35 apocarotenoid pigment neurosporaxanthin. In this work, we investigated the activity of CAO-1, assuming that it may provide retinal, the chromophore of the NOP-1 rhodopsin, by cleaving β-carotene. For this purpose, we tested CAO-1 activity with carotenoid substrates that were, however, not converted. In contrast and consistent with its sequence similarity to family members that act on stilbenes, CAO-1 cleaved the interphenyl Cα-Cβ double bond of resveratrol and its derivative piceatannol. CAO-1 did not convert five other similar stilbenes, indicating a requirement for a minimal number of unmodified hydroxyl groups in the stilbene background. Confirming its biological function in converting stilbenes, adding resveratrol led to a pronounced increase in cao-1 mRNA levels, while light, a key regulator of carotenoid metabolism, did not alter them. Targeted Δcao-1 mutants were not impaired by the presence of resveratrol, a phytoalexin active against different fungi, which did not significantly affect the growth and development of wild-type Neurospora. However, under partial sorbose toxicity, the Δcao-1 colonies exhibited faster radial growth than control strains in the presence of resveratrol, suggesting a moderate toxic effect of resveratrol cleavage products.

21 citations


Network Information
Related Topics (5)
Abscisic acid
12.8K papers, 587K citations
81% related
Cell wall
6.3K papers, 336.9K citations
81% related
Agrobacterium
8.8K papers, 328.1K citations
80% related
Arabidopsis thaliana
19.1K papers, 1M citations
80% related
Hordeum vulgare
20.3K papers, 717.5K citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202321
202256
202119
202013
201922
201815