scispace - formally typeset
Search or ask a question
Topic

Phytoalexin

About: Phytoalexin is a research topic. Over the lifetime, 1161 publications have been published within this topic receiving 63405 citations. The topic is also known as: phytoalexins.


Papers
More filters
Journal ArticleDOI
TL;DR: Evidence is presented to support the hypothesis that the action of elicitors in stimulating phytoalexin synthesis is not species or variety specific but, rather, is part of a general defensive response of plants.
Abstract: The glucan elicitor isolated from the mycelial walls of Phytophthora megasperma var. sojae, the fungus which causes stem and root rot in soybeans, stimulates the activity of phenylalanine ammonia-lyase and the accumulation of glyceollin in suspension-cultured soybean cells. Nigeran, a commercially available fungal wall glucan, was the only other compound tested which has any activity in this system. Glyceollin is a phenylpropanoid-derived phytoalexin which is toxic to P. megasperma var. sojae. Evidence is presented to support the hypothesis that the action of elicitors in stimulating phytoalexin synthesis is not species or variety specific but, rather, is part of a general defensive response of plants.

155 citations

Journal ArticleDOI
TL;DR: Comparison of the extent of cell death associated with disease symptoms in infected leaves of wild-type Arabidopsis and a camalexin-deficient mutant suggested that camaleXin does not contribute significantly to cell death in infected tissue, suggesting that camalxin toxicity is a consequence of membrane disruption.
Abstract: The virulent Arabidopsis thaliana pathogen Pseudomonas syringae pv. maculicola strain ES4326 (Psm ES4326) and other gram-negative bacteria are sensitive to camalexin (3-thiazol-2'-yl-indole), the Arabidopsis phytoalexin. Furthermore, Psm ES4326 is unable to degrade camalexin or to become tolerant to it. Apparently, Psm ES4326 is a successful pathogen even though it elicits synthesis of a host phytoalexin to which it is sensitive. Assays of membrane integrity revealed that, like other phytoalexins, camalexin disrupts bacterial membranes, suggesting that camalexin toxicity is a consequence of membrane disruption. A screen for camalexin-resistant mutants of Psm ES4326 yielded only partially resistant mutants, which displayed partial resistance in both killing and membrane integrity assays. These mutants were also resistant to low concentrations of tetracycline and nalidixic acid, suggesting that they were affected in components of the outer membrane. The mutants were not distinguishable from Psm ES4326 in virulence assays. Camalexin was toxic to Arabidopsis cells growing in tissue culture. However, comparison of the extent of cell death associated with disease symptoms in infected leaves of wild-type Arabidopsis and a camalexin-deficient mutant suggested that camalexin does not contribute significantly to cell death in infected tissue.

154 citations

Journal ArticleDOI
TL;DR: Dietary resveratrol is hypolipidemic with a tendency for anti-tumor-growth and anti-metastasis effects in hepatoma-bearing rats, and its antioxidative properties or those of its metabolite(s) in vivo are unclear.

154 citations

Journal ArticleDOI
TL;DR: It is concluded that the response of soybean cotyledons to Dpm elicitor involves NO formation via a constitutive NOS-like enzyme that triggers the biosynthesis of antimicrobial flavonoids.
Abstract: Phytoalexin biosynthesis is part of the defense mechanism of soybean (Glycine max) plants against attack by the fungus Diaporthe phaseolorum f. sp. meridionalis (Dpm), the causal agent of stem canker disease. The treatment of soybean cotyledons with Dpm elicitor or with sodium nitroprusside (SNP), a nitric oxide (NO) donor, resulted in a high accumulation of phytoalexins. This response did not occur when SNP was replaced by ferricyanide, a structural analog of SNP devoid of the NO moiety. Phytoalexin accumulation induced by the fungal elicitor, but not by SNP, was prevented when cotyledons were pretreated with NO synthase (NOS) inhibitors. The Dpm elicitor also induced NOS activity in soybean tissues proximal to the site of inoculation. The induced NOS activity was Ca(2+)- and NADPH-dependent and was sensitive to the NOS inhibitors N(G)-nitro-L-arginine methyl ester, aminoguanidine, and L-N(6)-(iminoethyl) lysine. NOS activity was not observed in SNP-elicited tissues. An antibody to brain NOS labeled a 166-kD protein in elicited and nonelicited cotyledons. Isoflavones (daidzein and genistein), pterocarpans (glyceollins), and flavones (apigenin and luteolin) were identified after exposure to the elicitor or SNP, although the accumulation of glyceollins and apigenin was limited in SNP-elicited compared with fungal-elicited cotyledons. NOS activity preceded the accumulation of these flavonoids in tissues treated with the Dpm elicitor. The accumulation of these metabolites was faster in SNP-elicited than in fungal-elicited cotyledons. We conclude that the response of soybean cotyledons to Dpm elicitor involves NO formation via a constitutive NOS-like enzyme that triggers the biosynthesis of antimicrobial flavonoids.

153 citations

Journal ArticleDOI
TL;DR: Contrary to the current theory, BcLCC2 does not detoxify resveratrol but, rather, converts it into compounds that are more toxic for the fungus itself.
Abstract: The grapevine (Vitis) secondary metabolite resveratrol is considered a phytoalexin, which protects the plant from Botrytis cinerea infection. Laccase activity displayed by the fungus is assumed to detoxify resveratrol and to facilitate colonization of grape. We initiated a functional molecular genetic analysis of B. cinerea laccases by characterizing laccase genes and evaluating the phenotype of targeted gene replacement mutants. Two different laccase genes from B. cinerea were characterized, Bclcc1 and Bclcc2. Only Bclcc2 was strongly expressed in liquid cultures in the presence of either resveratrol or tannins. This suggested that Bclcc2, but not Bclcc1, plays an active role in the oxidation of both resveratrol and tannins. Gene replacement mutants in the Bclcc1 and Bclcc2 gene were made to perform a functional analysis. Only Bclcc2 replacement mutants were incapable of converting both resveratrol and tannins. When grown on resveratrol, both the wild type and the Bclcc1 replacement mutant showed inhibited growth, whereas Bclcc2 replacement mutants were unaffected. Thus, contrary to the current theory, BcLCC2 does not detoxify resveratrol but, rather, converts it into compounds that are more toxic for the fungus itself. The Bclcc2 gene was expressed during infection of B. cinerea on a resveratrol-producing host plant, but Bclcc2 replacement mutants were as virulent as the wild-type strain on various hosts. The activation of a plant secondary metabolite by a pathogen introduces a new dimension to plant-pathogen interactions and the phytoalexin concept.

153 citations


Network Information
Related Topics (5)
Abscisic acid
12.8K papers, 587K citations
81% related
Cell wall
6.3K papers, 336.9K citations
81% related
Agrobacterium
8.8K papers, 328.1K citations
80% related
Arabidopsis thaliana
19.1K papers, 1M citations
80% related
Hordeum vulgare
20.3K papers, 717.5K citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202321
202256
202119
202013
201922
201815