scispace - formally typeset
Search or ask a question
Topic

Phytoalexin

About: Phytoalexin is a research topic. Over the lifetime, 1161 publications have been published within this topic receiving 63405 citations. The topic is also known as: phytoalexins.


Papers
More filters
Journal ArticleDOI
TL;DR: A polysaccharide from the fungal pathogen Colletotrichum lindemuthianum causes browning and phytoalexin production when applied to the cut surfaces of bean (Phaseolus vulgaris) cotyledons and hypocotyls.
Abstract: A polysaccharide from the fungal pathogen Colletotrichum lindemuthianum causes browning and phytoalexin production when applied to the cut surfaces of bean (Phaseolus vulgaris) cotyledons and hypocotyls. The application of an amount of polysaccharide equivalent to less than 100 ng of glucose will elicit this response in the bean tissues. The polysaccharide has been isolated both from culture filtrates and from the mycelial walls of the fungus. Purification of the polysaccharide involved anion and cation exchange chromatography and gel filtration. The polysaccharide has an apparent molecular weight between 1,000,000 and 5,000,000 daltons, and consists predominantly of 3- and 4-linked glucosyl residues.

135 citations

Journal ArticleDOI
TL;DR: Phytoalexin synthesis can be favorably studied in experimental systems mimicking as closely as possible the natural infection process, as well as in systems of reduced complexity utilizing plant cell cultures and inducers of microbial origin (elicitors).

134 citations

Journal ArticleDOI
TL;DR: It is proposed that synthesis of the pigment complex constitutes a defense response and that the compounds apigeninidin and luteolinidin should be considered as phytoalexins.
Abstract: Infection of the sorghum mesocotyl by Helminthosporium maydis (a nonpathogen) and Colletotrichum graminicola (a pathogen) resulted in the rapid accumulation of a pigment complex by two sorghum cultivars. The components of the complex were fungitoxic. The principal compounds have been identified as the 3-deoxyanthocyanidins apigeninidin and luteolinidin. Apigeninidin accumulated in both sorghum cultivars in response to infection and was the predominant pigment. Luteolinidin accumulated in only one of the cultivars. Because of the speed of synthesis, occurrence only in response to inoculation, and fungitoxicity of the individual components, we propose that synthesis of the pigment complex constitutes a defense response and that the compounds apigeninidin and luteolinidin should be considered as phytoalexins.

134 citations

Journal ArticleDOI
TL;DR: The results suggest the possibility that biosynthesis of glyceollin in the resistance response of soybeans may be controlled at the transcriptional level by changes in abscisic acid concentrations caused by infection.
Abstract: Etiolated hypocotyls of the resistant soybean (Glycine max [L.] Merr.) cultivar Harosoy 63 became susceptible to Phytophthora megasperma (Drechs.) f.sp. glycinea (Hildeb.) Kuan and Erwin race 1 after treatment with abscisic acid. Susceptibility was expressed by increases in lesion size and a major decrease in accumulation of the isoflavonoid phytoalexin, glyceollin. In untreated hypocotyls, activity of phenylalanine ammonia-lyase and accumulation of mRNA for this enzyme increased rapidly after infection, but these increases were suppressed in abscisic acid-treated hypocotyls. The results suggest the possibility that biosynthesis of glyceollin in the resistance response of soybeans may be controlled at the transcriptional level by changes in abscisic acid concentrations caused by infection.

133 citations

Journal ArticleDOI
TL;DR: These experiments suggest that NPS3121 has an active mechanism to suppress the accumulation of defense transcripts and phytoalexin biosynthesis in bean.
Abstract: We have developed a model system to examine suppression of defense responses in bean by the compatible bacterium Pseudomonas syringae pv phaseolicola. Previously, we have shown that there is a general mechanism for the induction of the bean defense genes phenylalanine ammonia-lyase (PAL), chalcone synthase (CHS), chalcone isomerase (CHI), and chitinase (CHT) by incompatible, compatible, and nonpathogenic bacteria. Here, we show that bean plants infiltrated with isolates of P. s. phaseolicola failed to produce transcripts for PAL, CHS, or CHI up to 120 hr after infiltration and CHT transcript accumulation was significantly delayed when compared to the incompatible P. syringae strains. Infiltration of bean plants with 108 cells per mL of P. s. phaseolicola NPS3121 8 hr prior to infiltration with an equal concentration of incompatible P. s. pv tabaci Pt11528 significantly reduced the typical profile of defense transcript accumulation when compared to plants infiltrated with Pt11528 alone. A corresponding suppression of phytoalexin accumulation was also observed. NPS3121 also suppressed PAL, CHS, CHI, and CHT transcript accumulation and phytoalexin production induced by Escherichia coli DH5[alpha] or the elicitor glutathione. Heat-killed NPS3121 cells or cells treated with protein synthesis inhibitors lost the suppressor activity. Taken together, these experiments suggest that NPS3121 has an active mechanism to suppress the accumulation of defense transcripts and phytoalexin biosynthesis in bean.

131 citations


Network Information
Related Topics (5)
Abscisic acid
12.8K papers, 587K citations
81% related
Cell wall
6.3K papers, 336.9K citations
81% related
Agrobacterium
8.8K papers, 328.1K citations
80% related
Arabidopsis thaliana
19.1K papers, 1M citations
80% related
Hordeum vulgare
20.3K papers, 717.5K citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202321
202256
202119
202013
201922
201815