scispace - formally typeset
Search or ask a question

Showing papers on "PI3K/AKT/mTOR pathway published in 2008"


Journal ArticleDOI
TL;DR: This review examines the idea that several core fluxes, including aerobic glycolysis, de novo lipid biosynthesis, and glutamine-dependent anaplerosis, form a stereotyped platform supporting proliferation of diverse cell types and regulates regulation of these fluxes by cellular mediators of signal transduction and gene expression.

3,526 citations


Journal ArticleDOI
TL;DR: AMPK directly phosphorylates the mTOR binding partner raptor on two well-conserved serine residues, and this phosphorylation induces 14-3-3 binding to raptor, uncovering a conserved effector of AMPK that mediates its role as a metabolic checkpoint coordinating cell growth with energy status.

3,328 citations


Journal ArticleDOI
18 Sep 2008-Oncogene
TL;DR: The high frequency of phosphoinositide 3-kinase (PI3K) pathway alterations in cancer has led to a surge in the development of PI3K inhibitors and proposed treatment strategies tailored for these genetic lesions are proposed.
Abstract: The high frequency of phosphoinositide 3-kinase (PI3K) pathway alterations in cancer has led to a surge in the development of PI3K inhibitors. Many of these targeted therapies are currently in clinical trials and show great promise for the treatment of PI3K-addicted tumors. These recent developments call for a re-evaluation of the oncogenic mechanisms behind PI3K pathway alterations. This pathway is unique in that every major node is frequently mutated or amplified in a wide variety of solid tumors. Receptor tyrosine kinases upstream of PI3K, the p110α catalytic subunit of PI3K, the downstream kinase, AKT, and the negative regulator, PTEN, are all frequently altered in cancer. In this review, we will examine the oncogenic properties of these genetic alterations to understand whether they are redundant or distinct and propose treatment strategies tailored for these genetic lesions.

1,767 citations


Journal ArticleDOI
07 Nov 2008-Science
TL;DR: The manipulation of intrinsic growth control pathways as a therapeutic approach to promote axon regeneration after CNS injury is suggested.
Abstract: The failure of axons to regenerate is a major obstacle for functional recovery after central nervous system (CNS) injury. Removing extracellular inhibitory molecules results in limited axon regeneration in vivo. To test for the role of intrinsic impediments to axon regrowth, we analyzed cell growth control genes using a virus-assisted in vivo conditional knockout approach. Deletion of PTEN (phosphatase and tensin homolog), a negative regulator of the mammalian target of rapamycin (mTOR) pathway, in adult retinal ganglion cells (RGCs) promotes robust axon regeneration after optic nerve injury. In wild-type adult mice, the mTOR activity was suppressed and new protein synthesis was impaired in axotomized RGCs, which may contribute to the regeneration failure. Reactivating this pathway by conditional knockout of tuberous sclerosis complex 1, another negative regulator of the mTOR pathway, also leads to axon regeneration. Thus, our results suggest the manipulation of intrinsic growth control pathways as a therapeutic approach to promote axon regeneration after CNS injury.

1,397 citations


Journal ArticleDOI
TL;DR: MAPK activation as a consequence of mTORC1 inhibition is identified and the potential of a combined therapeutic approach with m TORC1 and MAPK inhibitors, currently employed as single agents in the clinic, for the treatment of human cancers is underscore.
Abstract: Numerous studies have established a causal link between aberrant mammalian target of rapamycin (mTOR) activation and tumorigenesis, indicating that mTOR inhibition may have therapeutic potential. In this study, we show that rapamycin and its analogs activate the MAPK pathway in human cancer, in what represents a novel mTORC1-MAPK feedback loop. We found that tumor samples from patients with biopsy-accessible solid tumors of advanced disease treated with RAD001, a rapamycin derivative, showed an administration schedule–dependent increase in activation of the MAPK pathway. RAD001 treatment also led to MAPK activation in a mouse model of prostate cancer. We further show that rapamycin-induced MAPK activation occurs in both normal cells and cancer cells lines and that this feedback loop depends on an S6K-PI3K-Ras pathway. Significantly, pharmacological inhibition of the MAPK pathway enhanced the antitumoral effect of mTORC1 inhibition by rapamycin in cancer cells in vitro and in a xenograft mouse model. Taken together, our findings identify MAPK activation as a consequence of mTORC1 inhibition and underscore the potential of a combined therapeutic approach with mTORC1 and MAPK inhibitors, currently employed as single agents in the clinic, for the treatment of human cancers.

1,351 citations


Journal ArticleDOI
TL;DR: In vivo studies suggest that inhibitors of the PI3K-mTOR pathway may be active in cancers with PIK3CA mutations and, when combined with MEK inhibitors, may effectively treat KRAS mutated lung cancers.
Abstract: Somatic mutations that activate phosphoinositide 3-kinase (PI3K) have been identified in the p110-alpha catalytic subunit (encoded by PIK3CA). They are most frequently observed in two hotspots: the helical domain (E545K and E542K) and the kinase domain (H1047R). Although the p110-alpha mutants are transforming in vitro, their oncogenic potential has not been assessed in genetically engineered mouse models. Furthermore, clinical trials with PI3K inhibitors have recently been initiated, and it is unknown if their efficacy will be restricted to specific, genetically defined malignancies. In this study, we engineered a mouse model of lung adenocarcinomas initiated and maintained by expression of p110-alpha H1047R. Treatment of these tumors with NVP-BEZ235, a dual pan-PI3K and mammalian target of rapamycin (mTOR) inhibitor in clinical development, led to marked tumor regression as shown by positron emission tomography-computed tomography, magnetic resonance imaging and microscopic examination. In contrast, mouse lung cancers driven by mutant Kras did not substantially respond to single-agent NVP-BEZ235. However, when NVP-BEZ235 was combined with a mitogen-activated protein kinase kinase (MEK) inhibitor, ARRY-142886, there was marked synergy in shrinking these Kras-mutant cancers. These in vivo studies suggest that inhibitors of the PI3K-mTOR pathway may be active in cancers with PIK3CA mutations and, when combined with MEK inhibitors, may effectively treat KRAS mutated lung cancers.

1,279 citations


Journal ArticleDOI
TL;DR: The results suggest that the PI3K/Akt/TOR pathway regulates protein and lipid biosynthesis in an orchestrated manner and that both processes are required for cell growth.

1,143 citations


Journal ArticleDOI
TL;DR: The preclinical data show that NVP-BEZ235 is a potent dual PI3K/mTOR modulator with favorable pharmaceutical properties, and the compound was well tolerated, displayed disease stasis when administered orally, and enhanced the efficacy of other anticancer agents when used in in vivo combination studies.
Abstract: The phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin inhibitor (mTOR) pathway is often constitutively activated in human tumor cells, providing unique opportunities for anticancer therapeutic intervention. NVP-BEZ235 is an imidazo[4,5-c]quinoline derivative that inhibits PI3K and mTOR kinase activity by binding to the ATP-binding cleft of these enzymes. In cellular settings using human tumor cell lines, this molecule is able to effectively and specifically block the dysfunctional activation of the PI3K pathway, inducing G(1) arrest. The cellular activity of NVP-BEZ235 translates well in in vivo models of human cancer. Thus, the compound was well tolerated, displayed disease stasis when administered orally, and enhanced the efficacy of other anticancer agents when used in in vivo combination studies. Ex vivo pharmacokinetic/pharmacodynamic analyses of tumor tissues showed a time-dependent correlation between compound concentration and PI3K/Akt pathway inhibition. Collectively, the preclinical data show that NVP-BEZ235 is a potent dual PI3K/mTOR modulator with favorable pharmaceutical properties. NVP-BEZ235 is currently in phase I clinical trials.

1,127 citations


Journal ArticleDOI
08 Aug 2008-Cell
TL;DR: Sestrin1 and Sestrin2 provide an important link between genotoxic stress, p53 and the mTOR signaling pathway and are demonstrated to activate the AMP-responsive protein kinase (AMPK) and target it to phosphorylate TSC2 and stimulate its GAP activity, thereby inhibiting mTOR.

1,126 citations


Journal ArticleDOI
TL;DR: It is indicated that deregulation of miRNAs is a recurrent event in human ovarian cancer and that miR-214 induces cell survival and cisplatin resistance primarily through targeting the PTEN/Akt pathway.
Abstract: MicroRNAs (miRNA) represent a novel class of genes that function as negative regulators of gene expression. Recently, miRNAs have been implicated in several cancers. However, aberrant miRNA expression and its clinicopathologic significance in human ovarian cancer have not been well documented. Here, we show that several miRNAs are altered in human ovarian cancer, with the most significantly deregulated miRNAs being miR-214, miR-199a*, miR-200a, miR-100, miR-125b, and let-7 cluster. Further, we show the frequent deregulation of miR-214, miR-199a*, miR-200a, and miR-100 in ovarian cancers. Significantly, miR-214 induces cell survival and cisplatin resistance through targeting the 3'-untranslated region (UTR) of the PTEN, which leads to down-regulation of PTEN protein and activation of Akt pathway. Inhibition of Akt using Akt inhibitor, API-2/triciribine, or introduction of PTEN cDNA lacking 3'-UTR largely abrogates miR-214-induced cell survival. These findings indicate that deregulation of miRNAs is a recurrent event in human ovarian cancer and that miR-214 induces cell survival and cisplatin resistance primarily through targeting the PTEN/Akt pathway.

1,084 citations


Journal ArticleDOI
TL;DR: The activity of curcumin reported against leukemia and lymphoma, gastrointestinal cancers, genitourinary cancers, breast cancer, ovarian cancer, head and neck squamous cell carcinoma, lung cancer, melanoma, neurological cancers, and sarcoma reflects its ability to affect multiple targets.

Journal ArticleDOI
02 May 2008-Cell
TL;DR: This review discusses emerging modes of PTEN function and regulation, and speculates about how manipulation ofPTEN function could be used for cancer therapy.

Journal ArticleDOI
TL;DR: PI3K pathway aberrations likely play a distinct role in the pathogenesis of different breast cancer subtypes and the specific aberration present may have implications for the selection of PI3K-targeted therapies in hormone receptor-positive breast cancer.
Abstract: Phosphatidylinositol 3-kinase (PI3K)/AKT pathway aberrations are common in cancer. By applying mass spectroscopy-based sequencing and reverse-phase protein arrays to 547 human breast cancers and 41 cell lines, we determined the subtype specificity and signaling effects of PIK3CA, AKT, and PTEN mutations and the effects of PIK3CA mutations on responsiveness to PI3K inhibition in vitro and on outcome after adjuvant tamoxifen. PIK3CA mutations were more common in hormone receptor-positive (34.5%) and HER2-positive (22.7%) than in basal-like tumors (8.3%). AKT1 (1.4%) and PTEN (2.3%) mutations were restricted to hormone receptor-positive cancers. Unlike AKT1 mutations that were absent from cell lines, PIK3CA (39%) and PTEN (20%) mutations were more common in cell lines than tumors, suggesting a selection for these but not AKT1 mutations during adaptation to culture. PIK3CA mutations did not have a significant effect on outcome after adjuvant tamoxifen therapy in 157 hormone receptor-positive breast cancer patients. PIK3CA mutations, in comparison with PTEN loss and AKT1 mutations, were associated with significantly less and inconsistent activation of AKT and of downstream PI3K/AKT signaling in tumors and cell lines. PTEN loss and PIK3CA mutation were frequently concordant, suggesting different contributions to pathophysiology. PTEN loss rendered cells significantly more sensitive to growth inhibition by the PI3K inhibitor LY294002 than did PIK3CA mutations. Thus, PI3K pathway aberrations likely play a distinct role in the pathogenesis of different breast cancer subtypes. The specific aberration present may have implications for the selection of PI3K-targeted therapies in hormone receptor-positive breast cancer.

Journal ArticleDOI
TL;DR: Growing evidence suggests that HIF-, mTOR- and UPR-dependent responses to hypoxia act in an integrated way, influencing each other and common downstream pathways that affect gene expression, metabolism, cell survival, tumorigenesis and tumour growth.
Abstract: Hypoxia occurs in the majority of tumours, promoting angiogenesis, metastasis and resistance to therapy. Responses to hypoxia are orchestrated in part through activation of the hypoxia-inducible factor family of transcription factors (HIFs). Recently, two additional O(2)-sensitive signalling pathways have also been implicated: signalling through the mammalian target of rapamycin (mTOR) kinase and signalling through activation of the unfolded protein response (UPR). Although they are activated independently, growing evidence suggests that HIF-, mTOR- and UPR-dependent responses to hypoxia act in an integrated way, influencing each other and common downstream pathways that affect gene expression, metabolism, cell survival, tumorigenesis and tumour growth.

Journal ArticleDOI
18 Sep 2008-Oncogene
TL;DR: The current status of the PTEN– PI3K signaling pathway is reviewed with special emphasis on the most recent data on targets and regulation of thePTEN–PI3K axis, which provides novel provocative therapeutic implications based on the targeted modulation of PI3k-cross-talking signals.
Abstract: The tumor suppressor PTEN was originally identified as a negative regulator of the phosphoinositide 3-kinase (PI3K) signaling, a main regulator of cell growth, metabolism and survival. Yet this function of PTEN is extremely relevant for its tumor-suppressive ability, albeit the recent characterization of many PI3K-independent tumor-suppressive activities. PI3K-mediated PIP(3) production leads to the activation of the canonical AKT-mTORC1 pathway. The implications of this signaling cascade in health and disease have been underscored by the high number of regulators within the pathway whose alterations give rise to different malignancies, including familiar syndromes, metabolic dysfunctions and cancer. Moreover, PI3K is tightly buffered at multiple levels by downstream components, which have turned this signaling pathway literally upside down. PI3K and its downstream components in turn cross-talk with a number of other pathways, thereby leading to a complex network of signals that may have dramatic consequences when perturbed. Here, we review the current status of the PTEN-PI3K signaling pathway with special emphasis on the most recent data on targets and regulation of the PTEN-PI3K axis. This provides novel provocative therapeutic implications based on the targeted modulation of PI3K-cross-talking signals.

Journal ArticleDOI
TL;DR: It is demonstrated that the PI3K/Akt/mTOR signaling network regulates Foxp3 expression, and premature termination of TCR signaling and inibition of phosphatidyl inositol 3-kinase (PI3K) p110α, p110δ, protein kinase B (Akt), or mammalian target of rapamycin (mTOR) conferred Foxp 3 expression and Treg-like gene expression profiles.
Abstract: Regulatory T (Treg) cells safeguard against autoimmunity and immune pathology. Because determinants of the Treg cell fate are not completely understood, we have delineated signaling events that control the de novo expression of Foxp3 in naive peripheral CD4 T cells and in thymocytes. We report that premature termination of TCR signaling and inibition of phosphatidyl inositol 3-kinase (PI3K) p110α, p110δ, protein kinase B (Akt), or mammalian target of rapamycin (mTOR) conferred Foxp3 expression and Treg-like gene expression profiles. Conversely, continued TCR signaling and constitutive PI3K/Akt/mTOR activity antagonised Foxp3 induction. At the chromatin level, di- and trimethylation of lysine 4 of histone H3 (H3K4me2 and -3) near the Foxp3 transcription start site (TSS) and within the 5′ untranslated region (UTR) preceded active Foxp3 expression and, like Foxp3 inducibility, was lost upon continued TCR stimulation. These data demonstrate that the PI3K/Akt/mTOR signaling network regulates Foxp3 expression.

Journal ArticleDOI
TL;DR: The unexpected discovery that rapamycin's ability to regulate cap-dependent translation varies significantly among cell types is reported, and it is shown that mTOR catalytic inhibitors are effective inhibitors of theRapamycin-resistant phenotype.
Abstract: The mammalian translational initiation machinery is a tightly controlled system that is composed of eukaryotic initiation factors, and which controls the recruitment of ribosomes to mediate cap-dependent translation. Accordingly, the mTORC1 complex functionally controls this cap-dependent translation machinery through the phosphorylation of its downstream substrates 4E-BPs and S6Ks. It is generally accepted that rapamycin, a specific inhibitor of mTORC1, is a potent translational repressor. Here we report the unexpected discovery that rapamycin's ability to regulate cap-dependent translation varies significantly among cell types. We show that this effect is mechanistically caused by rapamycin's differential effect on 4E-BP1 versus S6Ks. While rapamycin potently inhibits S6K activity throughout the duration of treatment, 4E-BP1 recovers in phosphorylation within 6 h despite initial inhibition (1-3 h). This reemerged 4E-BP1 phosphorylation is rapamycin-resistant but still requires mTOR, Raptor, and mTORC1's activity. Therefore, these results explain how cap-dependent translation can be maintained in the presence of rapamycin. In addition, we have also defined the condition by which rapamycin can control cap-dependent translation in various cell types. Finally, we show that mTOR catalytic inhibitors are effective inhibitors of the rapamycin-resistant phenotype.

Journal ArticleDOI
TL;DR: A cyclical mTOR-independent pathway regulating autophagy is revealed, in which cAMP regulates IP3 levels, influencing calpain activity, which completes the cycle by cleaving and activating G(s)alpha, which regulates cAMP levels.
Abstract: Autophagy is a major clearance route for intracellular aggregate-prone proteins causing diseases such as Huntington's disease Autophagy induction with the mTOR inhibitor rapamycin accelerates clearance of these toxic substrates As rapamycin has nontrivial side effects, we screened FDA-approved drugs to identify new autophagy-inducing pathways We found that L-type Ca2+ channel antagonists, the K+ATP channel opener minoxidil, and the G(i) signaling activator clonidine induce autophagy These drugs revealed a cyclical mTOR-independent pathway regulating autophagy, in which cAMP regulates IP3 levels, influencing calpain activity, which completes the cycle by cleaving and activating G(s)alpha, which regulates cAMP levels This pathway has numerous potential points where autophagy can be induced, and we provide proof of principle for therapeutic relevance in Huntington's disease using mammalian cell, fly and zebrafish models Our data also suggest that insults that elevate intracytosolic Ca2+ (like excitotoxicity) inhibit autophagy, thus retarding clearance of aggregate-prone proteins

Journal ArticleDOI
TL;DR: This review will provide an update on the clinical progress of various agents that target the PI3K/Akt/mTOR pathway and discuss strategies to combine these pathway inhibitors with conventional chemotherapy, radiotherapy, as well as newer targeted agents.

Journal ArticleDOI
TL;DR: This study establishes miR-7 as a regulator of major cancer pathways and suggests that it has therapeutic potential for glioblastoma.
Abstract: microRNAs are noncoding RNAs inhibiting expression of numerous target genes, and a few have been shown to act as oncogenes or tumor suppressors. We show that microRNA-7 (miR-7) is a potential tumor suppressor in glioblastoma targeting critical cancer pathways. miR-7 potently suppressed epidermal growth factor receptor expression, and furthermore it independently inhibited the Akt pathway via targeting upstream regulators. miR-7 expression was down-regulated in glioblastoma versus surrounding brain, with a mechanism involving impaired processing. Importantly, transfection with miR-7 decreased viability and invasiveness of primary glioblastoma lines. This study establishes miR-7 as a regulator of major cancer pathways and suggests that it has therapeutic potential for glioblastoma. [Cancer Res 2008;68(10):3566–71]

Journal ArticleDOI
17 Oct 2008-Immunity
TL;DR: It is shown that the tuberous sclerosis complex-mammalian target of rapamycin (TSC-mTOR) pathway regulated inflammatory responses after bacterial stimulation in monocytes, macrophages, and primary dendritic cells, and protected genetically susceptible mice against lethal Listeria monocytogenes infection.

Journal ArticleDOI
TL;DR: Treatment with rapamycin that led to further Aktactivation and resistance to etoposide hypersensitized cancer cells to ROS-mediated apoptosis constitutes a strategy for cancer therapy that selectively eradicates cancer cells via Akt activation.

Journal ArticleDOI
TL;DR: NVP-BEZ235 inhibits the PI3K/mTOR axis and results in antiproliferative and antitumoral activity in cancer cells with both wild-type and mutated p110-alpha, suggesting that skin may serve as surrogate tissue for pharmacodynamic studies.
Abstract: Phosphatidylinositol-3-kinase (PI3K) pathway deregulation is a common event in human cancer, either through inactivation of the tumor suppressor phosphatase and tensin homologue deleted from chromosome 10 or activating mutations of p110-alpha These hotspot mutations result in oncogenic activity of the enzyme and contribute to therapeutic resistance to the anti-HER2 antibody trastuzumab The PI3K pathway is, therefore, an attractive target for cancer therapy We have studied NVP-BEZ235, a dual inhibitor of the PI3K and the downstream mammalian target of rapamycin (mTOR) NVP-BEZ235 inhibited the activation of the downstream effectors Akt, S6 ribosomal protein, and 4EBP1 in breast cancer cells The antiproliferative activity of NVP-BEZ235 was superior to the allosteric selective mTOR complex inhibitor everolimus in a panel of 21 cancer cell lines of different origin and mutation status The described Akt activation due to mTOR inhibition was prevented by higher doses of NVP-BEZ235 NVP-BEZ235 reversed the hyperactivation of the PI3K/mTOR pathway caused by the oncogenic mutations of p110-alpha, E545K, and H1047R, and inhibited the proliferation of HER2-amplified BT474 cells exogenously expressing these mutations that render them resistant to trastuzumab In trastuzumab-resistant BT474 H1047R breast cancer xenografts, NVP-BEZ235 inhibited PI3K signaling and had potent antitumor activity In treated animals, there was complete inhibition of PI3K signaling in the skin at pharmacologically active doses, suggesting that skin may serve as surrogate tissue for pharmacodynamic studies In summary, NVP-BEZ235 inhibits the PI3K/mTOR axis and results in antiproliferative and antitumoral activity in cancer cells with both wild-type and mutated p110-alpha

Journal ArticleDOI
TL;DR: AKT is identified as a strong repressor of entry into the T reg phenotype in vitro and in vivo and is placed at a nexus of signaling pathways whose proper activation has a strong and broad impact on the onset of T reg specification.
Abstract: CD4+Foxp3+ regulatory T (T reg) cells play an essential role in maintaining immunological tolerance via their suppressive function on conventional CD4+ T (Tconv) cells. Repertoire studies suggest that distinct T cell receptor signaling pathways lead to T reg differentiation, but the signals that regulate T reg specification are largely unknown. We identify AKT as a strong repressor of entry into the T reg phenotype in vitro and in vivo. A constitutively active allele of AKT substantially diminished TGF-β–induced Foxp3 expression in a kinase-dependent manner and via a rapamycin-sensitive pathway, implicating the AKT–mammalian target of rapamycin axis. The observed impairment in Foxp3 induction was part of a broad dampening of the typical T reg transcriptional signature. Expression of active AKT at a stage before Foxp3 turn on during normal T reg differentiation in the thymus selectively impaired differentiation of CD4+Foxp3+ cells without any alteration in the positive selection of Tconv. Activated AKT, in contrast, did not affect established Foxp3 expression in T reg cells. These results place AKT at a nexus of signaling pathways whose proper activation has a strong and broad impact on the onset of T reg specification.

Journal ArticleDOI
TL;DR: The data strongly support the view of the PTEN/PI3K/AKT pathway as an important target for drug discovery.
Abstract: PTEN/PI3K/AKT constitutes an important pathway regulating the signaling of multiple biological processes such as apoptosis, metabolism, cell proliferation and cell growth. PTEN is a dual protein/lipid phosphatase which main substrate is the phosphatidyl-inositol,3,4,5 triphosphate (PIP3), the product of PI3K. Increase in PIP3 recruits AKT to the membrane where it is activated by other kinases also dependent on PIP3. Many components of this pathway have been described as causal forces in cancer. PTEN activity is lost by mutations, deletions or promoter methylation silencing at high frequency in many primary and metastatic human cancers. Germ line mutations of PTEN are found in several familial cancer predisposition syndromes. Activating mutations which have been reported for PI3K and AKT, in tumours are able to confer tumourigenic properties in several cellular systems. Additionally, the binding of PI3K to oncogenic ras is essential for the transforming properties of ras. In summary, the data strongly support the view of the PTEN/PI3K/AKT pathway as an important target for drug discovery.

01 Jan 2008
TL;DR: NVP-BEZ235, a dual inhibitor of the PI3K and the downstream mammalian target of rapamycin (mTOR), was shown to have antiproliferative and antitumoral activity in cancer cells with both wild type and mutated p110-A as mentioned in this paper.
Abstract: Phosphatidylinositol-3-kinase (PI3K) pathway deregulation is a common event in human cancer, either through inactivation of the tumor suppressor phosphatase and tensin homologue deleted from chromosome 10 or activating mutations of p110A.These hotspot mutations result in oncogenic activity of the enzyme and contribute to therapeutic resistance to the antiHER2 antibody trastuzumab.The PI3K pathway is, therefore, an attractive target for cancer therapy.We have studied NVPBEZ235, a dual inhibitor of the PI3K and the downstream mammalian target of rapamycin (mTOR).NVP-BEZ235 inhibited the activation of the downstream effectors Akt, S6 ribosomal protein, and 4EBP1 in breast cancer cells.The antiproliferative activity of NVP-BEZ235 was superior to the allosteric selective mTOR complex inhibitor everolimus in a panel of 21 cancer cell lines of different origin and mutation status.The described Akt activation due to mTOR inhibition was prevented by higher doses of NVP-BEZ235.NVP-BEZ235 reversed the hyperactivation of the PI3K/mTOR pathway caused by the oncogenic mutations of p110-A, E545K, and H1047R, and inhibited the proliferation of HER2-amplified BT474 cells exogenously expressing these mutations that render them resistant to trastuzumab.In trastuzumabresistant BT474 H1047R breast cancer xenografts, NVPBEZ235 inhibited PI3K signaling and had potent antitumor activity.In treated animals, there was complete inhibition of PI3K signaling in the skin at pharmacologically active doses, suggesting that skin may serve as surrogate tissue for pharmacodynamic studies.In summary, NVP-BEZ235 inhibits the PI3K/mTOR axis and results in antiproliferative and antitumoral activity in cancer cells with both wild-type and mutated p110-A. [Cancer Res 2008;68(19):8022–30]

Journal ArticleDOI
27 Oct 2008-Oncogene
TL;DR: An overview of present advances in the field regarding the function of AkT in physiological and pathological cell function within a more generalized framework of Akt signal transduction is provided.
Abstract: The Akt serine/threonine kinase (also called protein kinase B) has emerged as a critical signaling molecule within eukaryotic cells. Significant progress has been made in clarifying its regulation by upstream kinases and identifying downstream mechanisms that mediate its effects in cells and contribute to signaling specificity. Here, we provide an overview of present advances in the field regarding the function of Akt in physiological and pathological cell function within a more generalized framework of Akt signal transduction. An emphasis is placed on the involvement of Akt in human diseases ranging from cancer to metabolic dysfunction and mental disease.

Journal ArticleDOI
TL;DR: It is demonstrated that hypoxia and REDD1 suppress mammalian TORC1 (mTORC1) activity by releasing TSC2 from its growth factor-induced association with inhibitory 14-3-3 proteins, which defines a molecular mechanism of signal integration by TSC1/2 that provides insight into the ability of REDD 1 to function in a hypoxIA-dependent tumor suppressor pathway.
Abstract: Hypoxia induces rapid and dramatic changes in cellular metabolism, in part through inhibition of target of rapamycin (TOR) kinase complex 1 (TORC1) activity. Genetic studies have shown the tuberous sclerosis tumor suppressors TSC1/2 and the REDD1 protein to be essential for hypoxia regulation of TORC1 activity in Drosophila and in mammalian cells. The molecular mechanism and physiologic significance of this effect of hypoxia remain unknown. Here, we demonstrate that hypoxia and REDD1 suppress mammalian TORC1 (mTORC1) activity by releasing TSC2 from its growth factor-induced association with inhibitory 14–3–3 proteins. Endogenous REDD1 is required for both dissociation of endogenous TSC2/14–3–3 and inhibition of mTORC1 in response to hypoxia. REDD1 mutants that fail to bind 14–3–3 are defective in eliciting TSC2/14–3–3 dissociation and mTORC1 inhibition, while TSC2 mutants that do not bind 14-3-3 are inactive in hypoxia signaling to mTORC1. In vitro, loss of REDD1 signaling promotes proliferation and anchorage-independent growth under hypoxia through mTORC1 dysregulation. In vivo, REDD1 loss elicits tumorigenesis in a mouse model, and down-regulation of REDD1 is observed in a subset of human cancers. Together, these findings define a molecular mechanism of signal integration by TSC1/2 that provides insight into the ability of REDD1 to function in a hypoxia-dependent tumor suppressor pathway.

Journal ArticleDOI
TL;DR: MTOR signaling has a critical role in the pathogenesis of HCC, with evidence for the role of RICTOR in hepato-oncogenesis, and a rationale for targeting the mTOR pathway in clinical trials in HCC is established.

Journal ArticleDOI
TL;DR: Class III PI3Ks are implicated in the regulation of both autophagy and, through the mTOR pathway, protein synthesis, and thus contribute to the integration of cellular responses to changing nutritional status.
Abstract: The Class III PI3K (phosphoinositide 3-kinase), Vps34 (vacuolar protein sorting 34), was first described as a component of the vacuolar sorting system in Saccharomyces cerevisiae and is the sole PI3K in yeast. The homologue in mammalian cells, hVps34, has been studied extensively in the context of endocytic sorting. However, hVps34 also plays an important role in the ability of cells to respond to changes in nutrient conditions. Recent studies have shown that mammalian hVps34 is required for the activation of the mTOR (mammalian target of rapamycin)/S6K1 (S6 kinase 1) pathway, which regulates protein synthesis in response to nutrient availability. In both yeast and mammalian cells, Class III PI3Ks are also required for the induction of autophagy during nutrient deprivation. Finally, mammalian hVps34 is itself regulated by nutrients. Thus Class III PI3Ks are implicated in the regulation of both autophagy and, through the mTOR pathway, protein synthesis, and thus contribute to the integration of cellular responses to changing nutritional status.