scispace - formally typeset
Search or ask a question

Showing papers on "PI3K/AKT/mTOR pathway published in 2010"


Journal ArticleDOI
TL;DR: Observations to date suggest that oxidative stress, chronic inflammation, and cancer are closely linked.

3,922 citations


Journal ArticleDOI
TL;DR: A better understanding of how the different PI3K isoforms are regulated and control signalling could uncover their roles in pathology and reveal in which disease contexts their blockade could be most beneficial.
Abstract: Phosphoinositide 3-kinases (PI3Ks) function early in intracellular signal transduction pathways and affect many biological functions. A further level of complexity derives from the existence of eight PI3K isoforms, which are divided into class I, class II and class III PI3Ks. PI3K signalling has been implicated in metabolic control, immunity, angiogenesis and cardiovascular homeostasis, and is one of the most frequently deregulated pathways in cancer. PI3K inhibitors have recently entered clinical trials in oncology. A better understanding of how the different PI3K isoforms are regulated and control signalling could uncover their roles in pathology and reveal in which disease contexts their blockade could be most beneficial.

1,504 citations


Journal ArticleDOI
17 Jun 2010-Nature
TL;DR: It is shown that mTOR signalling in rat kidney cells is inhibited during initiation of autophagy, but reactivated by prolonged starvation, and this generates proto-lysosomal tubules and vesicles that extrude from autolysosomes and ultimately mature into functional lysosomes, thereby restoring the full complement of lysosity in the cell.
Abstract: Autophagy is an evolutionarily conserved process by which cytoplasmic proteins and organelles are catabolized During starvation, the protein TOR (target of rapamycin), a nutrient-responsive kinase, is inhibited, and this induces autophagy In autophagy, double-membrane autophagosomes envelop and sequester intracellular components and then fuse with lysosomes to form autolysosomes, which degrade their contents to regenerate nutrients Current models of autophagy terminate with the degradation of the autophagosome cargo in autolysosomes, but the regulation of autophagy in response to nutrients and the subsequent fate of the autolysosome are poorly understood Here we show that mTOR signalling in rat kidney cells is inhibited during initiation of autophagy, but reactivated by prolonged starvation Reactivation of mTOR is autophagy-dependent and requires the degradation of autolysosomal products Increased mTOR activity attenuates autophagy and generates proto-lysosomal tubules and vesicles that extrude from autolysosomes and ultimately mature into functional lysosomes, thereby restoring the full complement of lysosomes in the cell-a process we identify in multiple animal species Thus, an evolutionarily conserved cycle in autophagy governs nutrient sensing and lysosome homeostasis during starvation

1,333 citations


Journal ArticleDOI
TL;DR: This review will discuss how PI3K signaling affects the growth and survival of tumor cells and consider how inhibitors of this pathway, either alone or in combination with other therapeutics, can be used for the treatment of cancer.
Abstract: The phosphatidylinositol 3-kinase (PI3K) signaling axis impacts on cancer cell growth, survival, motility, and metabolism. This pathway is activated by several different mechanisms in cancers, including somatic mutation and amplification of genes encoding key components. In addition, PI3K signaling may serve integral functions for noncancerous cells in the tumor microenvironment. Consequently, therapeutics targeting the PI3K pathway are being developed at a rapid pace, and preclinical and early clinical studies are beginning to suggest specific strategies to effectively use them. However, the central role of PI3K signaling in a large array of diverse biologic processes raises concerns about its use in therapeutics and increases the need to develop sophisticated strategies for its use. In this review, we will discuss how PI3K signaling affects the growth and survival of tumor cells. From this vantage, we will consider how inhibitors of the PI3K signaling cascade, either alone or in combination with other therapeutics, can most effectively be used for the treatment of cancer.

1,190 citations


Journal ArticleDOI
TL;DR: In this paper, the authors focus on the key components of the mTOR complex 1 pathway and how various stresses impinge upon them and how they are implicated in the progression of stress-associated phenotypes and diseases, such as aging, tumorigenesis, and diabetes.

1,108 citations


Journal ArticleDOI
TL;DR: Although the majority of evidence linking mTOR function to synaptic plasticity comes from studies utilizing rapamycin, studies in genetically modified mice also suggest that mTOR couples receptors to the translation machinery for establishing long-lasting synaptic changes that are the basis for higher order brain function, including long-term memory.

990 citations


01 Oct 2010
TL;DR: This review focuses on the key components of the mTOR complex 1 pathway and on how various stresses impinge upon them.
Abstract: The large serine/threonine protein kinase mTOR regulates cellular and organismal homeostasis by coordinating anabolic and catabolic processes with nutrient, energy, and oxygen availability and growth factor signaling. Cells and organisms experience a wide variety of insults that perturb the homeostatic systems governed by mTOR and therefore require appropriate stress responses to allow cells to continue to function. Stress can manifest from an excess or lack of upstream signals or as a result of genetic perturbations in upstream effectors of the pathway. mTOR nucleates two large protein complexes that are important nodes in the pathways that help buffer cells from stresses, and are implicated in the progression of stress-associated phenotypes and diseases, such as aging, tumorigenesis, and diabetes. This review focuses on the key components of the mTOR complex 1 pathway and on how various stresses impinge upon them.

984 citations


Journal ArticleDOI
TL;DR: To their surprise, 3-MA is found to promote autophagy flux when treated under nutrient-rich conditions with a prolonged period of treatment, whereas it is still capable of suppressing starvation-induced autophagosomes or lysosomal function.

966 citations


Journal ArticleDOI
10 Jun 2010-Blood
TL;DR: It is demonstrated that, in mouse DCs, TLR agonists stimulate a profound metabolic transition to aerobic glycolysis, similar to the Warburg metabolism displayed by cancer cells.

944 citations


Journal ArticleDOI
TL;DR: It is found that PTEN/mTOR are critical for controlling the regenerative capacity of mouse corticospinal neurons and modulating neuronal intrinsic PTEN-mTOR activity represents a potential therapeutic strategy for promoting axon regeneration and functional repair after adult spinal cord injury.
Abstract: Despite the essential role of the corticospinal tract (CST) in controlling voluntary movements, successful regeneration of large numbers of injured CST axons beyond a spinal cord lesion has never been achieved. We found that PTEN/mTOR are critical for controlling the regenerative capacity of mouse corticospinal neurons. After development, the regrowth potential of CST axons was lost and this was accompanied by a downregulation of mTOR activity in corticospinal neurons. Axonal injury further diminished neuronal mTOR activity in these neurons. Forced upregulation of mTOR activity in corticospinal neurons by conditional deletion of Pten, a negative regulator of mTOR, enhanced compensatory sprouting of uninjured CST axons and enabled successful regeneration of a cohort of injured CST axons past a spinal cord lesion. Furthermore, these regenerating CST axons possessed the ability to reform synapses in spinal segments distal to the injury. Thus, modulating neuronal intrinsic PTEN/mTOR activity represents a potential therapeutic strategy for promoting axon regeneration and functional repair after adult spinal cord injury.

818 citations


Journal ArticleDOI
09 Sep 2010-Oncogene
TL;DR: The role of the RAF/MEK/ERK pathway, phosphatidylinositol-3 kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway, WNT/β-catenin pathway, insulin-like growth factor pathway, hepatocyte growth factor/c-MET pathway and growth factor-regulated angiogenic signaling are explored.
Abstract: Hepatocellular carcinoma (HCC) is a highly prevalent, treatment-resistant malignancy with a multifaceted molecular pathogenesis. Current evidence indicates that during hepatocarcinogenesis, two main pathogenic mechanisms prevail: (1) cirrhosis associated with hepatic regeneration after tissue damage caused by hepatitis infection, toxins (for example, alcohol or aflatoxin) or metabolic influences, and (2) mutations occurring in single or multiple oncogenes or tumor suppressor genes. Both mechanisms have been linked with alterations in several important cellular signaling pathways. These pathways are of interest from a therapeutic perspective, because targeting them may help to reverse, delay or prevent tumorigenesis. In this review, we explore some of the major pathways implicated in HCC. These include the RAF/MEK/ERK pathway, phosphatidylinositol-3 kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway, WNT/beta-catenin pathway, insulin-like growth factor pathway, hepatocyte growth factor/c-MET pathway and growth factor-regulated angiogenic signaling. We focus on the role of these pathways in hepatocarcinogenesis, how they are altered, and the consequences of these abnormalities. In addition, we also review the latest preclinical and clinical data on the rationally designed targeted agents that are now being directed against these pathways, with early evidence of success.

Journal ArticleDOI
TL;DR: The results presented here provide a molecular basis for the Abeta-induced cognitive deficits and, moreover, show that rapamycin, an FDA approved drug, improves learning and memory and reduces Abeta and Tau pathology.

Journal ArticleDOI
TL;DR: AZD8055 is described, a novel ATP-competitive inhibitor of mTOR kinase activity, with an IC50 of 0.8 nmol/L, which results in significant growth inhibition and/or regression in xenografts, representing a broad range of human tumor types.
Abstract: The mammalian target of rapamycin (mTOR) kinase forms two multiprotein complexes, mTORC1 and mTORC2, which regulate cell growth, cell survival, and autophagy. Allosteric inhibitors of mTORC1, such as rapamycin, have been extensively used to study tumor cell growth, proliferation, and autophagy but have shown only limited clinical utility. Here, we describe AZD8055, a novel ATP-competitive inhibitor of mTOR kinase activity, with an IC50 of 0.8 nmol/L. AZD8055 showed excellent selectivity (approximately 1,000-fold) against all class I phosphatidylinositol 3-kinase (PI3K) isoforms and other members of the PI3K-like kinase family. Furthermore, there was no significant activity against a panel of 260 kinases at concentrations up to 10 micromol/L. AZD8055 inhibits the phosphorylation of mTORC1 substrates p70S6K and 4E-BP1 as well as phosphorylation of the mTORC2 substrate AKT and downstream proteins. The rapamycin-resistant T37/46 phosphorylation sites on 4E-BP1 were fully inhibited by AZD8055, resulting in significant inhibition of cap-dependent translation. In vitro, AZD8055 potently inhibits proliferation and induces autophagy in H838 and A549 cells. In vivo, AZD8055 induces a dose-dependent pharmacodynamic effect on phosphorylated S6 and phosphorylated AKT at plasma concentrations leading to tumor growth inhibition. Notably, AZD8055 results in significant growth inhibition and/or regression in xenografts, representing a broad range of human tumor types. AZD8055 is currently in phase I clinical trials.

Journal ArticleDOI
TL;DR: It is shown, using a mouse model of liver cancer, that miR-221 overexpression stimulates growth of tumorigenic murine hepatic progenitor cells, and DNA damage-inducible transcript 4 (DDIT4), a modulator of mTOR pathway, is identified as a bona fide target of miR -221.
Abstract: MicroRNA (miRNAs) are negative regulators of gene expression and can function as tumor suppressors or oncogenes. Expression patterns of miRNAs and their role in the pathogenesis of hepatocellular carcinoma (HCC) are still poorly understood. We profiled miRNA expression in tissue samples (104 HCC, 90 adjacent cirrhotic livers, 21 normal livers) as well as in 35 HCC cell lines. A set of 12 miRNAs (including miR-21, miR-221/222, miR-34a, miR-519a, miR-93, miR-96, and let-7c) was linked to disease progression from normal liver through cirrhosis to full-blown HCC. miR-221/222, the most up-regulated miRNAs in tumor samples, are shown to target the CDK inhibitor p27 and to enhance cell growth in vitro. Conversely, these activities can be efficiently inhibited by an antagomiR specific for miR-221. In addition, we show, using a mouse model of liver cancer, that miR-221 overexpression stimulates growth of tumorigenic murine hepatic progenitor cells. Finally, we identified DNA damage-inducible transcript 4 (DDIT4), a modulator of mTOR pathway, as a bona fide target of miR-221. Taken together, these data reveal an important contribution for miR-221 in hepatocarcinogenesis and suggest a role for DDIT4 dysregulation in this process. Thus, the use of synthetic inhibitors of miR-221 may prove to be a promising approach to liver cancer treatment.

Journal ArticleDOI
TL;DR: This review covers how redox-dependent transcriptional activators such as NF-E2 related factor 2, NF2, NF-κB and AP-1 along with the transcription repressor BTB and CNC homologue 1 (Bach1) control the inducible HO-1 gene expression and the role of central pro- and anti-inflammatory cellular signaling cascades including p38 MAPK and phosphatidylinositol-3 kinase (PI3K)/

Journal ArticleDOI
TL;DR: In this article, a branch point in the insulin signaling pathway that may account for selective insulin resistance was identified, which may help to resolve the paradox of insulin resistance in livers of diabetic rodents.
Abstract: The livers of insulin-resistant, diabetic mice manifest selective insulin resistance, suggesting a bifurcation in the insulin signaling pathway: Insulin loses its ability to block glucose production (i.e., it fails to suppress PEPCK and other genes of gluconeogenesis), yet it retains its ability to stimulate fatty acid synthesis (i.e., continued enhancement of genes of lipogenesis). Enhanced lipogenesis is accompanied by an insulin-stimulated increase in the mRNA encoding SREBP-1c, a transcription factor that activates the entire lipogenic program. Here, we report a branch point in the insulin signaling pathway that may account for selective insulin resistance. Exposure of rat hepatocytes to insulin produced a 25-fold increase in SREBP-1c mRNA and a 95% decrease in PEPCK mRNA. Insulin-mediated changes in both mRNAs were blocked by inhibitors of PI3K and Akt, indicating that these kinases are required for both pathways. In contrast, subnanomolar concentrations of rapamycin, an inhibitor of the mTORC1 kinase, blocked insulin induction of SREBP-1c, but had no effect on insulin suppression of PEPCK. We observed a similar selective effect of rapamycin in livers of rats and mice that experienced an insulin surge in response to a fasting-refeeding protocol. A specific inhibitor of S6 kinase, a downstream target of mTORC1, did not block insulin induction of SREBP-1c, suggesting a downstream pathway distinct from S6 kinase. These results establish mTORC1 as an essential component in the insulin-regulated pathway for hepatic lipogenesis but not gluconeogenesis, and may help to resolve the paradox of selective insulin resistance in livers of diabetic rodents.

Journal ArticleDOI
TL;DR: Mutations in each of these kidney cancer genes result in dysregulation of metabolic pathways involved in oxygen, iron, energy or nutrient sensing, suggesting that kidney cancer is a disease of cell metabolism.
Abstract: Kidney cancer is not a single disease but comprises a number of different types of cancer that occur in the kidney, each caused by a different gene with a different histology and clinical course that responds differently to therapy. Each of the seven known kidney cancer genes, VHL, MET, FLCN, TSC1, TSC2, FH and SDH, is involved in pathways that respond to metabolic stress or nutrient stimulation. The VHL protein is a component of the oxygen and iron sensing pathway that regulates hypoxia-inducible factor (HIF) levels in the cell. HGF-MET signaling affects the LKB1-AMPK energy sensing cascade. The FLCN-FNIP1-FNIP2 complex binds AMPK and, therefore, might interact with the cellular energy and nutrient sensing pathways AMPK-TSC1/2-mTOR and PI3K-Akt-mTOR. TSC1-TSC2 is downstream of AMPK and negatively regulates mTOR in response to cellular energy deficit. FH and SDH have a central role in the mitochondrial tricarboxylic acid cycle, which is coupled to energy production through oxidative phosphorylation. Mutations in each of these kidney cancer genes result in dysregulation of metabolic pathways involved in oxygen, iron, energy or nutrient sensing, suggesting that kidney cancer is a disease of cell metabolism. Targeting the fundamental metabolic abnormalities in kidney cancer provides a unique opportunity for the development of more-effective forms of therapy for this disease.

Journal ArticleDOI
TL;DR: Antagonism of the mTOR pathway with rapamycin and related compounds may provide new therapeutic options for TSC patients.
Abstract: Tuberous sclerosis complex (TSC) is an autosomal dominant disorder that results from mutations in the TSC1 or TSC2 genes and is associated with hamartoma formation in multiple organ systems. The neurological manifestations of TSC are particularly challenging and include infantile spasms, intractable epilepsy, cognitive disabilities, and autism. Progress over the past 15 years has demonstrated that the TSC1 or TSC2 encoded proteins modulate cell function via the mTOR signaling cascade and serve as keystones in regulating cell growth and proliferation. The mTOR pathway provides an intersection for an intricate network of protein cascades that respond to cellular nutrition, energy levels, and growth-factor stimulation. In the brain, TSC1 and TSC2 have been implicated in cell body size, dendritic arborization, axonal outgrowth and targeting, neuronal migration, cortical lamination, and spine formation. Antagonism of the mTOR pathway with rapamycin and related compounds may provide new therapeutic options for TSC patients.

Journal ArticleDOI
29 Jan 2010-Immunity
TL;DR: It is demonstrated that interleukin-12 (IL-12) enhanced and sustained antigen and costimulatory molecule (B7.1)-induced mTOR kinase activity in naive CD8+ (OT-I) T cells via phosphoinositide 3-kinase and STAT4 transcription factor pathways.

Journal ArticleDOI
TL;DR: This study identifies IRS-1 as a key regulator of PI3K within malignant cells within lung adenocarcinomas and describes the first description of a secreted proteinase gaining access to the inside of a cell and altering intracellular signaling.
Abstract: Lung cancer is the leading cause of cancer death worldwide. Recent data suggest that tumor-associated inflammatory cells may modify lung tumor growth and invasiveness. To determine the role of neutrophil elastase (encoded by Elane) on tumor progression, we used the loxP-Stop-loxP K-ras(G12D) (LSL-K-ras) model of mouse lung adenocarcinoma to generate LSL-K-ras-Elane(-/-) mice. Tumor burden was markedly reduced in LSL-K-ras-Elane(-/-) mice at all time points after induction of mutant K-ras expression. Kaplan-Meier survival analysis showed that whereas all LSL-K-ras-Elane(+/+) mice died, none of the mice lacking neutrophil elastase died. Neutrophil elastase directly induced tumor cell proliferation in both human and mouse lung adenocarcinomas by gaining access to an endosomal compartment within tumor cells, where it degraded insulin receptor substrate-1 (IRS-1). Immunoprecipitation studies showed that, as neutrophil elastase degraded IRS-1, there was increased interaction between phosphatidylinositol 3-kinase (PI3K) and the potent mitogen platelet-derived growth factor receptor (PDGFR), thereby skewing the PI3K axis toward tumor cell proliferation. The inverse relationship identified between neutrophil elastase and IRS-1 in LSL-K-ras mice was also identified in human lung adenocarcinomas, thus translating these findings to human disease. This study identifies IRS-1 as a key regulator of PI3K within malignant cells. Additionally, to our knowledge, this is the first description of a secreted proteinase gaining access to the inside of a cell and altering intracellular signaling.

Journal ArticleDOI
TL;DR: By identifying a drug combination that delays or even combats development of resistance when used as a first-line treatment in clinical trials, these results could ultimately improve the lives of patients with medulloblastoma or other cancers that depend on Smo for their survival.
Abstract: The malignant brain cancer medulloblastoma is characterized by mutations in Hedgehog (Hh) signaling pathway genes, which lead to constitutive activation of the G protein (heterotrimeric guanosine triphosphate-binding protein)-coupled receptor Smoothened (Smo). The Smo antagonist NVP-LDE225 inhibits Hh signaling and induces tumor regression in animal models of medulloblastoma. However, evidence of resistance was observed during the course of treatment. Molecular analysis of resistant tumors revealed several resistance mechanisms. We noted chromosomal amplification of Gli2, a downstream effector of Hh signaling, and, more rarely, point mutations in Smo that led to reactivated Hh signaling and restored tumor growth. Analysis of pathway gene expression signatures also, unexpectedly, identified up-regulation of phosphatidylinositol 3-kinase (PI3K) signaling in resistant tumors as another potential mechanism of resistance. Probing the relevance of increased PI3K signaling, we demonstrated that addition of the PI3K inhibitor NVP-BKM120 or the dual PI3K-mTOR (mammalian target of rapamycin) inhibitor NVP-BEZ235 to the initial treatment with the Smo antagonist markedly delayed the development of resistance. Our findings may be useful in informing treatment strategies for medulloblastoma.

Journal ArticleDOI
23 Dec 2010-Nature
TL;DR: The findings reveal that m TORC1 is a key regulator of PPARα function and hepatic ketogenesis and suggest a role for mTORC1 activity in promoting the ageing of the liver.
Abstract: The multi-component mechanistic target of rapamycin complex 1 (mTORC1) kinase is the central node of a mammalian pathway that coordinates cell growth with the availability of nutrients, energy and growth factors. Progress has been made in the identification of mTORC1 pathway components and in understanding their functions in cells, but there is relatively little known about the role of the pathway in vivo. Specifically, we have little knowledge regarding the role mTOCR1 has in liver physiology. In fasted animals, the liver performs numerous functions that maintain whole-body homeostasis, including the production of ketone bodies for peripheral tissues to use as energy sources. Here we show that mTORC1 controls ketogenesis in mice in response to fasting. We find that liver-specific loss of TSC1 (tuberous sclerosis 1), an mTORC1 inhibitor, leads to a fasting-resistant increase in liver size, and to a pronounced defect in ketone body production and ketogenic gene expression on fasting. The loss of raptor (regulatory associated protein of mTOR, complex 1) an essential mTORC1 component, has the opposite effects. In addition, we find that the inhibition of mTORC1 is required for the fasting-induced activation of PPARα (peroxisome proliferator activated receptor α), the master transcriptional activator of ketogenic genes, and that suppression of NCoR1 (nuclear receptor co-repressor 1), a co-repressor of PPARα, reactivates ketogenesis in cells and livers with hyperactive mTORC1 signalling. Like livers with activated mTORC1, livers from aged mice have a defect in ketogenesis, which correlates with an increase in mTORC1 signalling. Moreover, we show that the suppressive effects of mTORC1 activation and ageing on PPARα activity and ketone production are not additive, and that mTORC1 inhibition is sufficient to prevent the ageing-induced defect in ketogenesis. Thus, our findings reveal that mTORC1 is a key regulator of PPARα function and hepatic ketogenesis and suggest a role for mTORC1 activity in promoting the ageing of the liver.

Journal ArticleDOI
TL;DR: Elevated mTOR signaling may provide a functional link between overactivation of group I mGluRs and aberrant synaptic plasticity in the fragile X mouse, mechanisms relevant to impaired cognition in fragile X syndrome.
Abstract: Fragile X syndrome, the most common form of inherited mental retardation and leading genetic cause of autism, is caused by transcriptional silencing of the Fmr1 gene. The fragile X mental retardation protein (FMRP), the gene product of Fmr1, is an RNA binding protein that negatively regulates translation in neurons. The Fmr1 knock-out mouse, a model of fragile X syndrome, exhibits cognitive deficits and exaggerated metabotropic glutamate receptor (mGluR)-dependent long-term depression at CA1 synapses. However, the molecular mechanisms that link loss of function of FMRP to aberrant synaptic plasticity remain unclear. The mammalian target of rapamycin (mTOR) signaling cascade controls initiation of cap-dependent translation and is under control of mGluRs. Here we show that mTOR phosphorylation and activity are elevated in hippocampus of juvenile Fmr1 knock-out mice by four functional readouts: (1) association of mTOR with regulatory associated protein of mTOR; (2) mTOR kinase activity; (3) phosphorylation of mTOR downstream targets S6 kinase and 4E-binding protein; and (4) formation of eukaryotic initiation factor complex 4F, a critical first step in cap-dependent translation. Consistent with this, mGluR long-term depression at CA1 synapses of FMRP-deficient mice is exaggerated and rapamycin insensitive. We further show that the p110 subunit of the upstream kinase phosphatidylinositol 3-kinase (PI3K) and its upstream activator PI3K enhancer PIKE, predicted targets of FMRP, are upregulated in knock-out mice. Elevated mTOR signaling may provide a functional link between overactivation of group I mGluRs and aberrant synaptic plasticity in the fragile X mouse, mechanisms relevant to impaired cognition in fragile X syndrome.

Journal ArticleDOI
TL;DR: The data supporting the use of PI3K pathway inhibitors in genetically and clinically defined cancers is discussed, and their efficacy as single agents and in combination with other targeted therapies are focused on.

Journal ArticleDOI
TL;DR: Recent progress in the understanding of the regulation and function of mTOR signaling networks in cellular physiology is reviewed.

Journal ArticleDOI
TL;DR: A broad overview of the current knowledge concerning BDNF action and associated intracellular signaling as it relates to neuronal protection, synaptic function, and morphological change is presented.
Abstract: Brain-derived neurotrophic factor (BDNF) and its receptor, TrkB, are broadly expressed in the developing and adult mammalian brain. BDNF/TrkB-stimulated intracellular signaling is critical for neuronal survival, morphogenesis, and plasticity. It is well known that binding of BDNF to TrkB elicits various intracellular signaling pathways, including mitogen-activated protein kinase/extracellular signal-regulated protein kinase (MAPK/ERK), phospholipase Cg (PLCg), and phosphoinositide 3-kinase (PI3K) pathways, and that BDNF exerts biological effects on neurons via activation of similar mechanisms. In addition to TrkB, a low-affinity receptor p75 is also involved in neuronal survival and plasticity. BDNF affects neurons positively or negatively through various intracellular signaling pathways triggered by activation of TrkB or p75. From a clinical standpoint, roles of BDNF have been implicated in the pathophysiology of various brain diseases. The stress-induced steroid hormone, glucocorticoid, and BDNF are putatively associated with the pathophysiology of depression. Recent reports, including our studies, demonstrate possible crosstalk between glucocorticoid- and BDNF/TrkB-mediated signaling. Here, we present a broad overview of the current knowledge concerning BDNF action and associated intracellular signaling as it relates to neuronal protection, synaptic function, and morphological change. Furthermore, understanding the secretion and intracellular dynamics of BDNF proteins is critical as the fate of secreted BDNF may contribute to differences in neuronal response.

Journal ArticleDOI
TL;DR: The biology and cellular functions of FGFs are introduced and the biomaterials based delivery systems and their current applications for the regeneration of tissues are discussed, including skin, blood vessel, muscle, adipose, tendon/ligament, cartilage, bone, tooth, and nerve tissues.
Abstract: Fibroblast growth factors (FGFs) that signal through FGF receptors (FGFRs) regulate a broad spectrum of biological functions, including cellular proliferation, survival, migration, and differentiation. The FGF signal pathways are the RAS/MAP kinase pathway, PI3 kinase/AKT pathway, and PLCγ pathway, among which the RAS/MAP kinase pathway is known to be predominant. Several studies have recently implicated the in vitro biological functions of FGFs for tissue regeneration. However, to obtain optimal outcomes in vivo, it is important to enhance the half-life of FGFs and their biological stability. Future applications of FGFs are expected when the biological functions of FGFs are potentiated through the appropriate use of delivery systems and scaffolds. This review will introduce the biology and cellular functions of FGFs and deal with the biomaterials based delivery systems and their current applications for the regeneration of tissues, including skin, blood vessel, muscle, adipose, tendon/ligament, cartilage, bone, tooth, and nerve tissues.

Journal ArticleDOI
02 Dec 2010-Nature
TL;DR: Differences in metabolic and cell-cycle regulation between HSCs and some other haematopoietic progenitors are revealed, revealed through AMPK-dependent and AM PK-independent mechanisms.
Abstract: Little is known about metabolic regulation in stem cells and how this modulates tissue regeneration or tumour suppression. We studied the Lkb1 tumour suppressor and its substrate AMP-activated protein kinase (AMPK), kinases that coordinate metabolism with cell growth. Deletion of the Lkb1 (also called Stk11) gene in mice caused increased haematopoietic stem cell (HSC) division, rapid HSC depletion and pancytopenia. HSCs depended more acutely on Lkb1 for cell-cycle regulation and survival than many other haematopoietic cells. HSC depletion did not depend on mTOR activation or oxidative stress. Lkb1-deficient HSCs, but not myeloid progenitors, had reduced mitochondrial membrane potential and ATP levels. HSCs deficient for two catalytic α-subunits of AMPK (AMPK-deficient HSCs) showed similar changes in mitochondrial function but remained able to reconstitute irradiated mice. Lkb1-deficient HSCs, but not AMPK-deficient HSCs, exhibited defects in centrosomes and mitotic spindles in culture, and became aneuploid. Lkb1 is therefore required for HSC maintenance through AMPK-dependent and AMPK-independent mechanisms, revealing differences in metabolic and cell-cycle regulation between HSCs and some other haematopoietic progenitors.

Journal ArticleDOI
24 Sep 2010-Immunity
TL;DR: Findings demonstrate that the central role of mTOR provides a direct link between T cell metabolism and function and program the generation of CD4(+) effector versus regulatory T cells, thegeneration of CD8(+)effector versus memory cells, T-cell trafficking, and T cell activation versus anergy.

Journal ArticleDOI
03 Nov 2010-PLOS ONE
TL;DR: Results suggest that AMPK association with ULK1 plays an important role in autophagy induction, at least in part, by phosphorylation of raptor to lift the inhibitory effect of mTOR on the ULK 1 autophagic complex.
Abstract: Autophagy is a highly orchestrated intracellular bulk degradation process that is activated by various environmental stresses. The serine/threonine kinase ULK1, like its yeast homologue Atg1, is a key initiator of autophagy that is negatively regulated by the mTOR kinase. However, the molecular mechanism that controls the inhibitory effect of mTOR on ULK1-mediated autophagy is not fully understood. Here we identified AMPK, a central energy sensor, as a new ULK1-binding partner. We found that AMPK binds to the PS domain of ULK1 and this interaction is required for ULK1-mediated autophagy. Interestingly, activation of AMPK by AICAR induces 14-3-3 binding to the AMPK-ULK1-mTORC1 complex, which coincides with raptor Ser792 phosphorylation and mTOR inactivation. Consistently, AICAR induces autophagy in TSC2-deficient cells expressing wild-type raptor but not the mutant raptor that lacks the AMPK phosphorylation sites (Ser722 and Ser792). Taken together, these results suggest that AMPK association with ULK1 plays an important role in autophagy induction, at least in part, by phosphorylation of raptor to lift the inhibitory effect of mTOR on the ULK1 autophagic complex.