scispace - formally typeset
Search or ask a question

Showing papers on "PI3K/AKT/mTOR pathway published in 2018"


Journal ArticleDOI
TL;DR: This review focuses on the role of PI3K/AKT signalling in the skeletal muscle, adipose tissue, liver, brain and pancreas, and discusses how this signalling pathway affects the development of the aforementioned diseases.
Abstract: Obesity and type 2 diabetes mellitus are complicated metabolic diseases that affect multiple organs and are characterized by hyperglycaemia. Currently, stable and effective treatments for obesity and type 2 diabetes mellitus are not available. Therefore, the mechanisms leading to obesity and diabetes and more effective ways to treat obesity and diabetes should be identified. Based on accumulated evidences, the PI3K/AKT signalling pathway is required for normal metabolism due to its characteristics, and its imbalance leads to the development of obesity and type 2 diabetes mellitus. This review focuses on the role of PI3K/AKT signalling in the skeletal muscle, adipose tissue, liver, brain and pancreas, and discusses how this signalling pathway affects the development of the aforementioned diseases. We also summarize evidences for recently identified therapeutic targets of the PI3K/AKT pathway as treatments for obesity and type 2 diabetes mellitus. PI3K/AKT pathway damaged in various tissues of the body leads to obesity and type 2 diabetes as the result of insulin resistance, and in turn, insulin resistance exacerbates the PI3K/AKT pathway, forming a vicious circle.

711 citations


Journal ArticleDOI
TL;DR: Considering that oncogenic activation of the PI3K–AKT–mTOR pathway often occurs alongside pro-tumorigenic aberrations in other signalling networks, rational combinations are also needed to optimize the effectiveness of treatment.
Abstract: The PI3K-AKT-mTOR pathway is one of the most frequently dysregulated pathways in cancer and, consequently, more than 40 compounds that target key components of this signalling network have been tested in clinical trials involving patients with a range of different cancers. The clinical development of many of these agents, however, has not advanced to late-phase randomized trials, and the antitumour activity of those that have been evaluated in comparative prospective studies has typically been limited, or toxicities were found to be prohibitive. Nevertheless, the mTOR inhibitors temsirolimus and everolimus and the PI3K inhibitors idelalisib and copanlisib have been approved by the FDA for clinical use in the treatment of a number of different cancers. Novel compounds with greater potency and selectivity, as well as improved therapeutic indices owing to reduced risks of toxicity, are clearly required. In addition, biomarkers that are predictive of a response, such as PIK3CA mutations for inhibitors of the PI3K catalytic subunit α isoform, must be identified and analytically and clinically validated. Finally, considering that oncogenic activation of the PI3K-AKT-mTOR pathway often occurs alongside pro-tumorigenic aberrations in other signalling networks, rational combinations are also needed to optimize the effectiveness of treatment. Herein, we review the current experience with anticancer therapies that target the PI3K-AKT-mTOR pathway.

702 citations


Journal ArticleDOI
TL;DR: The interdependencies of mTOR signalling and metabolism pathways in cancer and how metabolic reprogramming in response to changes in m TOR signalling and vice versa can sustain tumorigenicity are discussed.
Abstract: Oncogenic signalling and metabolic alterations are interrelated in cancer cells. mTOR, which is frequently activated in cancer, controls cell growth and metabolism. mTOR signalling regulates amino acid, glucose, nucleotide, fatty acid and lipid metabolism. Conversely, metabolic inputs, such as amino acids, activate mTOR. In this Review, we discuss how mTOR signalling rewires cancer cell metabolism and delineate how changes in metabolism, in turn, sustain mTOR signalling and tumorigenicity. Several drugs are being developed to perturb cancer cell metabolism. However, their efficacy as stand-alone therapies, similar to mTOR inhibitors, is limited. Here, we discuss how the interdependence of mTOR signalling and metabolism can be exploited for cancer therapy.

587 citations


Journal ArticleDOI
TL;DR: Investigation of human endometrial cancer in which a hotspot R298P mutation is present in a key component of the methyltransferase complex reveals reduced m6A mRNA methylation as an oncogenic mechanism in endometricrial cancer and identifies m 6A methylationAs a regulator of AKT signalling.
Abstract: N6-methyladenosine (m6A) messenger RNA methylation is a gene regulatory mechanism affecting cell differentiation and proliferation in development and cancer. To study the roles of m6A mRNA methylation in cell proliferation and tumorigenicity, we investigated human endometrial cancer in which a hotspot R298P mutation is present in a key component of the methyltransferase complex (METTL14). We found that about 70% of endometrial tumours exhibit reductions in m6A methylation that are probably due to either this METTL14 mutation or reduced expression of METTL3, another component of the methyltransferase complex. These changes lead to increased proliferation and tumorigenicity of endometrial cancer cells, likely through activation of the AKT pathway. Reductions in m6A methylation lead to decreased expression of the negative AKT regulator PHLPP2 and increased expression of the positive AKT regulator mTORC2. Together, these results reveal reduced m6A mRNA methylation as an oncogenic mechanism in endometrial cancer and identify m6A methylation as a regulator of AKT signalling.

492 citations


Journal ArticleDOI
04 Jul 2018-Nature
TL;DR: It is shown, in several model tumours in mice, that systemic glucose–insulin feedback caused by targeted inhibition of this pathway is sufficient to activate PI3K signalling, even in the presence ofPI3K inhibitors.
Abstract: Mutations in PIK3CA, which encodes the p110α subunit of the insulin-activated phosphatidylinositol-3 kinase (PI3K), and loss of function mutations in PTEN, which encodes a phosphatase that degrades the phosphoinositide lipids generated by PI3K, are among the most frequent events in human cancers1,2. However, pharmacological inhibition of PI3K has resulted in variable clinical responses, raising the possibility of an inherent mechanism of resistance to treatment. As p110α mediates virtually all cellular responses to insulin, targeted inhibition of this enzyme disrupts glucose metabolism in multiple tissues. For example, blocking insulin signalling promotes glycogen breakdown in the liver and prevents glucose uptake in the skeletal muscle and adipose tissue, resulting in transient hyperglycaemia within a few hours of PI3K inhibition. The effect is usually transient because compensatory insulin release from the pancreas (insulin feedback) restores normal glucose homeostasis3. However, the hyperglycaemia may be exacerbated or prolonged in patients with any degree of insulin resistance and, in these cases, necessitates discontinuation of therapy3-6. We hypothesized that insulin feedback induced by PI3K inhibitors may reactivate the PI3K-mTOR signalling axis in tumours, thereby compromising treatment effectiveness7,8. Here we show, in several model tumours in mice, that systemic glucose-insulin feedback caused by targeted inhibition of this pathway is sufficient to activate PI3K signalling, even in the presence of PI3K inhibitors. This insulin feedback can be prevented using dietary or pharmaceutical approaches, which greatly enhance the efficacy/toxicity ratios of PI3K inhibitors. These findings have direct clinical implications for the multiple p110α inhibitors that are in clinical trials and provide a way to increase treatment efficacy for patients with many types of tumour.

405 citations


Journal ArticleDOI
TL;DR: Current evidence supports BCAAs and their derivatives as the potential biomarkers of diseases such as insulin resistance, type 2 diabetes mellitus, cancer, and cardiovascular diseases (CVDs), and optimizing dietary BCAA levels should have a positive effect on the parameters associated with health and diseases.
Abstract: Branched chain amino acids (BCAAs), including leucine (Leu), isoleucine (Ile), and valine (Val), play critical roles in the regulation of energy homeostasis, nutrition metabolism, gut health, immunity and disease in humans and animals. As the most abundant of essential amino acids (EAAs), BCAAs are not only the substrates for synthesis of nitrogenous compounds, they also serve as signaling molecules regulating metabolism of glucose, lipid, and protein synthesis, intestinal health, and immunity via special signaling network, especially phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) signal pathway. Current evidence supports BCAAs and their derivatives as the potential biomarkers of diseases such as insulin resistance (IR), type 2 diabetes mellitus (T2DM), cancer, and cardiovascular diseases (CVDs). These diseases are closely associated with catabolism and balance of BCAAs. Hence, optimizing dietary BCAA levels should have a positive effect on the parameters associated with health and diseases. This review focuses on recent findings of BCAAs in metabolic pathways and regulation, and underlying the relationship of BCAAs to related disease processes.

372 citations


Journal ArticleDOI
TL;DR: It is demonstrated that obesity induces robust peroxisome proliferator-activated receptor (PPAR)-driven lipid accumulation in NK cells, causing complete ‘paralysis’ of their cellular metabolism and trafficking and suggested that metabolic reprogramming of NK cells may improve cancer outcomes in obesity.
Abstract: Up to 49% of certain types of cancer are attributed to obesity, and potential mechanisms include overproduction of hormones, adipokines, and insulin. Cytotoxic immune cells, including natural killer (NK) cells and CD8+ T cells, are important in tumor surveillance, but little is known about the impact of obesity on immunosurveillance. Here, we show that obesity induces robust peroxisome proliferator-activated receptor (PPAR)-driven lipid accumulation in NK cells, causing complete 'paralysis' of their cellular metabolism and trafficking. Fatty acid administration, and PPARα and PPARδ (PPARα/δ) agonists, mimicked obesity and inhibited mechanistic target of rapamycin (mTOR)-mediated glycolysis. This prevented trafficking of the cytotoxic machinery to the NK cell-tumor synapse. Inhibiting PPARα/δ or blocking the transport of lipids into mitochondria reversed NK cell metabolic paralysis and restored cytotoxicity. In vivo, NK cells had blunted antitumor responses and failed to reduce tumor growth in obesity. Our results demonstrate that the lipotoxic obese environment impairs immunosurveillance and suggest that metabolic reprogramming of NK cells may improve cancer outcomes in obesity.

344 citations


Journal ArticleDOI
TL;DR: The molecular structure of c-Met and HGF and the mechanism through which their interaction activates the PI3K/AKT, Ras/MAPK, and Wnt signaling pathways are elaborate and the current therapeutic drugs targeted in primary tumors are introduced.
Abstract: c-Met is a receptor tyrosine kinase belonging to the MET (MNNG HOS transforming gene) family, and is expressed on the surfaces of various cells. Hepatocyte growth factor (HGF) is the ligand for this receptor. The binding of HGF to c-Met initiates a series of intracellular signals that mediate embryogenesis and wound healing in normal cells. However, in cancer cells, aberrant HGF/c-Met axis activation, which is closely related to c-Met gene mutations, overexpression, and amplification, promotes tumor development and progression by stimulating the PI3K/AKT, Ras/MAPK, JAK/STAT, SRC, Wnt/β-catenin, and other signaling pathways. Thus, c-Met and its associated signaling pathways are clinically important therapeutic targets. In this review, we elaborate on the molecular structure of c-Met and HGF and the mechanism through which their interaction activates the PI3K/AKT, Ras/MAPK, and Wnt signaling pathways. We also summarize the connection between c-Met and RON and EGFR, which are also receptor tyrosine kinases. Finally, we introduce the current therapeutic drugs that target c-Met in primary tumors, and their use in clinical research.

321 citations


Journal ArticleDOI
TL;DR: The role of PTEN in glycolysis, gluconeogenesis, glycogen synthesis, lipid metabolism as well as mitochondrial metabolism, and the PTEN-regulated signals in metabolic regulation were focused on.
Abstract: Phosphatase and Tensin Homologue deleted on Chromosome 10 (PTEN) is a dual phosphatase with both protein and lipid phosphatase activities. PTEN was first discovered as a tumor suppressor with growth and survival regulatory functions. In recent years, the function of PTEN as a metabolic regulator has attracted significant attention. As the lipid phosphatase that dephosphorylates phosphatidylinositol-3, 4, 5-phosphate (PIP3), PTEN reduces the level of PIP3, a critical 2nd messenger mediating the signal of not only growth factors but also insulin. In this review, we introduced the discovery of PTEN, the PTEN-regulated canonical and nuclear signals, and PTEN regulation. We then focused on the role of PTEN and PTEN-regulated signals in metabolic regulation. This included the role of PTEN in glycolysis, gluconeogenesis, glycogen synthesis, lipid metabolism as well as mitochondrial metabolism. We also included how PTEN and PTEN regulated metabolic functions may act paradoxically towards insulin sensitivity and tumor metabolism and growth. Further understanding of how PTEN regulates metabolism and how such regulations lead to different biological outcomes is necessary for interventions targeting at the PTEN-regulated signals in either cancer or diabetes treatment.

319 citations


Journal ArticleDOI
TL;DR: The regulation of FBXW7, its role in oncogenesis, and the clinical implications and prognostic value of loss of function of FBxW7 in human cancers are discussed.
Abstract: The ubiquitin-proteasome system (UPS) is involved in multiple aspects of cellular processes, such as cell cycle progression, cellular differentiation, and survival (Davis RJ et al., Cancer Cell 26:455-64, 2014; Skaar JR et al., Nat Rev Drug Discov 13:889-903, 2014; Nakayama KI and Nakayama K, Nat Rev Cancer 6:369-81, 2006). F-box and WD repeat domain containing 7 (FBXW7), also known as Sel10, hCDC4 or hAgo, is a member of the F-box protein family, which functions as the substrate recognition component of the SCF E3 ubiquitin ligase. FBXW7 is a critical tumor suppressor and one of the most commonly deregulated ubiquitin-proteasome system proteins in human cancer. FBXW7 controls proteasome-mediated degradation of oncoproteins such as cyclin E, c-Myc, Mcl-1, mTOR, Jun, Notch and AURKA. Consistent with the tumor suppressor role of FBXW7, it is located at chromosome 4q32, a genomic region deleted in more than 30% of all human cancers (Spruck CH et al., Cancer Res 62:4535-9, 2002). Genetic profiles of human cancers based on high-throughput sequencing have revealed that FBXW7 is frequently mutated in human cancers. In addition to genetic mutations, other mechanisms involving microRNA, long non-coding RNA, and specific oncogenic signaling pathways can inactivate FBXW7 functions in cancer cells. In the following sections, we will discuss the regulation of FBXW7, its role in oncogenesis, and the clinical implications and prognostic value of loss of function of FBXW7 in human cancers.

308 citations


Journal ArticleDOI
TL;DR: It is suggested that pharmacological targeting of mTOR may represent a therapeutic strategy to confer cardioprotection, although clinical evidence in support of this notion is still scarce.
Abstract: The mTOR (mechanistic target of rapamycin) is a master regulator of several crucial cellular processes, including protein synthesis, cellular growth, proliferation, autophagy, lysosomal function, and cell metabolism. mTOR interacts with specific adaptor proteins to form 2 multiprotein complexes, called mTORC1 (mTOR complex 1) and mTORC2 (mTOR complex 2). In the cardiovascular system, the mTOR pathway regulates both physiological and pathological processes in the heart. It is needed for embryonic cardiovascular development and for maintaining cardiac homeostasis in postnatal life. Studies involving mTOR loss-of-function models revealed that mTORC1 activation is indispensable for the development of adaptive cardiac hypertrophy in response to mechanical overload. mTORC2 is also required for normal cardiac physiology and ensures cardiomyocyte survival in response to pressure overload. However, partial genetic or pharmacological inhibition of mTORC1 reduces cardiac remodeling and heart failure in response to pressure overload and chronic myocardial infarction. In addition, mTORC1 blockade reduces cardiac derangements induced by genetic and metabolic disorders and has been reported to extend life span in mice. These studies suggest that pharmacological targeting of mTOR may represent a therapeutic strategy to confer cardioprotection, although clinical evidence in support of this notion is still scarce. This review summarizes and discusses the new evidence on the pathophysiological role of mTOR signaling in the cardiovascular system.

Journal ArticleDOI
TL;DR: It is shown that low-dose TORC1 inhibitor therapy in elderly humans decreased the incidence of all infections, improved influenza vaccination responses, and up-regulated antiviral immunity, as well as an up-regulation of antiviral gene expression and an improvement in the response to influenza vaccination in this treatment group.
Abstract: Inhibition of the mechanistic target of rapamycin (mTOR) protein kinase extends life span and ameliorates aging-related pathologies including declining immune function in model organisms. The objective of this phase 2a randomized, placebo-controlled clinical trial was to determine whether low-dose mTOR inhibitor therapy enhanced immune function and decreased infection rates in 264 elderly subjects given the study drugs for 6 weeks. A low-dose combination of a catalytic (BEZ235) plus an allosteric (RAD001) mTOR inhibitor that selectively inhibits target of rapamycin complex 1 (TORC1) downstream of mTOR was safe and was associated with a significant (P = 0.001) decrease in the rate of infections reported by elderly subjects for a year after study drug initiation. In addition, we observed an up-regulation of antiviral gene expression and an improvement in the response to influenza vaccination in this treatment group. Thus, selective TORC1 inhibition has the potential to improve immune function and reduce infections in the elderly.

Journal ArticleDOI
TL;DR: The MiT‐TFE family of basic helix‐loop‐helix leucine‐zipper transcription factors includes four members: TFEB, TFE3, TFEC, and MITF and regulation by phosphorylation at multiple key sites is summarized.
Abstract: The MiT-TFE family of basic helix-loop-helix leucine-zipper transcription factors includes four members: TFEB, TFE3, TFEC, and MITF Originally described as oncogenes, these factors play a major role as regulators of lysosome biogenesis, cellular energy homeostasis, and autophagy. An important mechanism by which these transcription factors are regulated involves their shuttling between the surface of lysosomes, the cytoplasm, and the nucleus. Such dynamic changes in subcellular localization occur in response to nutrient fluctuations and various forms of cell stress and are mediated by changes in the phosphorylation of multiple conserved amino acids. Major kinases responsible for MiT-TFE protein phosphorylation include mTOR, ERK, GSK3, and AKT In addition, calcineurin de-phosphorylates MiT-TFE proteins in response to lysosomal calcium release. Thus, through changes in the phosphorylation state of MiT-TFE proteins, lysosome function is coordinated with the cellular metabolic state and cellular demands. This review summarizes the evidence supporting MiT-TFE regulation by phosphorylation at multiple key sites. Elucidation of such regulatory mechanisms is of fundamental importance to understand how these transcription factors contribute to both health and disease.

Journal ArticleDOI
TL;DR: Increased miR‐124‐3p in microglial exosomes following traumatic brain injury inhibits neuronal inflammation and contributes to neurite outgrowth via their transfer into neurons.
Abstract: Neuronal inflammation is the characteristic pathologic change of acute neurologic impairment and chronic traumatic encephalopathy after traumatic brain injury (TBI). Inhibiting the excessive inflammatory response is essential for improving the neurologic outcome. To clarify the regulatory mechanism of microglial exosomes on neuronal inflammation in TBI, we focused on studying the impact of microglial exosomal miRNAs on injured neurons in this research. We used a repetitive (r)TBI mouse model and harvested the injured brain extracts from the acute to the chronic phase of TBI to treat cultured BV2 microglia in vitro The microglial exosomes were collected for miRNA microarray analysis, which showed that the expression level of miR-124-3p increased most apparently in the miRNAs. We found that miR-124-3p promoted the anti-inflamed M2 polarization in microglia, and microglial exosomal miR-124-3p inhibited neuronal inflammation in scratch-injured neurons. Further, the mammalian target of rapamycin (mTOR) signaling was implicated as being involved in the regulation of miR-124-3p by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses. Using the mTOR activator MHY1485 we confirmed that the inhibitory effect of exosomal miR-124-3p on neuronal inflammation was exerted by suppressing the activity of mTOR signaling. PDE4B was predicted to be the target gene of miR-124-3p by pathway analysis. We proved that it was directly targeted by miR-124-3p with a luciferase reporter assay. Using a PDE4B overexpressed lentivirus transfection system, we suggested that miR-124-3p suppressed the activity of mTOR signaling mainly through inhibiting the expression of PDE4B. In addition, exosomal miR-124-3p promoted neurite outgrowth after scratch injury, characterized by an increase on the number of neurite branches and total neurite length, and a decreased expression on RhoA and neurodegenerative proteins [Aβ-peptide and p-Tau]. It also improved the neurologic outcome and inhibited neuroinflammation in mice with rTBI. Taken together, increased miR-124-3p in microglial exosomes after TBI can inhibit neuronal inflammation and contribute to neurite outgrowth via their transfer into neurons. miR-124-3p exerted these effects by targeting PDE4B, thus inhibiting the activity of mTOR signaling. Therefore, miR-124-3p could be a promising therapeutic target for interventions of neuronal inflammation after TBI. miRNAs manipulated microglial exosomes may provide a novel therapy for TBI and other neurologic diseases.-Huang, S., Ge, X., Yu, J., Han, Z., Yin, Z., Li, Y., Chen, F., Wang, H., Zhang, J., Lei, P. Increased miR-124-3p in microglial exosomes following traumatic brain injury inhibits neuronal inflammation and contributes to neurite outgrowth via their transfer into neurons.

Journal ArticleDOI
TL;DR: The development of drugs targeting the PI3K/AKT/mTOR pathway for the treatment of TNBC is an evolving field that should take into account the efficacies and toxicities of new agents in addition to their interactions with different cancer pathways.
Abstract: Triple-negative breast cancer (TNBC) accounts for approximately 20% of breast cancer cases Although there have been advances in the treatment of hormone receptor-positive and human epidermal growth factor receptor 2-positive breast cancers, targeted therapies for TNBC remain unavailable In this narrative review, we summarize recent discoveries related to the underlying biology of the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mechanistic target of rapamycin (mTOR) pathway in TNBC, examine clinical progress to date, and suggest rational future approaches for investigational therapies in TNBC As with other subtypes of breast cancer, aberrations in the PI3K/AKT/mTOR pathway are common in TNBC Preclinical data support the notion that these aberrations predict TNBC inhibition by targeted agents In a recently published phase 2 clinical trial, an AKT inhibitor (ipatasertib) improved outcomes in a subset of patients with metastatic TNBC when combined with paclitaxel in the first-line setting In addition, new compounds with distinct specificity and potency targeting different PI3K/AKT/mTOR components and cognate molecules (eg, mitogen-activated protein kinase) are being developed These agents present a wide range of toxicity profiles and early efficacy signals, which must be considered prior to the advancement of new agents in later-phase clinical trials The development of drugs targeting the PI3K/AKT/mTOR pathway for the treatment of TNBC is an evolving field that should take into account the efficacies and toxicities of new agents in addition to their interactions with different cancer pathways

Journal ArticleDOI
TL;DR: A particular role in melatonin's actions seems to be associated with the upregulation of sirtuin‐1 (SIRT1), which shares various effects known from melatonin and additionally interferes with the signaling by the mechanistic target of rapamycin and Notch, and reduces the expression of the proinflammatory lncRNA‐CCL2.
Abstract: Melatonin is an immune modulator that displays both pro- and anti-inflammatory properties. Proinflammatory actions, which are well documented by many studies in isolated cells or leukocyte-derived cell lines, can be assumed to enhance the resistance against pathogens. However, they can be detrimental in autoimmune diseases. Anti-inflammatory actions are of particular medicinal interest, because they are observed in high-grade inflammation such as sepsis, ischemia/reperfusion, and brain injury, and also in low-grade inflammation during aging and in neurodegenerative diseases. The mechanisms contributing to anti-inflammatory effects are manifold and comprise various pathways of secondary signaling. These include numerous antioxidant effects, downregulation of inducible and inhibition of neuronal NO synthases, downregulation of cyclooxygenase-2, inhibition of high-mobility group box-1 signaling and toll-like receptor-4 activation, prevention of inflammasome NLRP3 activation, inhibition of NF-κB activation and upregulation of nuclear factor erythroid 2-related factor 2 (Nrf2). These effects are also reflected by downregulation of proinflammatory and upregulation of anti-inflammatory cytokines. Proinflammatory actions of amyloid-β peptides are reduced by enhancing α-secretase and inhibition of β- and γ-secretases. A particular role in melatonin's actions seems to be associated with the upregulation of sirtuin-1 (SIRT1), which shares various effects known from melatonin and additionally interferes with the signaling by the mechanistic target of rapamycin (mTOR) and Notch, and reduces the expression of the proinflammatory lncRNA-CCL2. The conclusion on a partial mediation by SIRT1 is supported by repeatedly observed inhibitions of melatonin effects by sirtuin inhibitors or knockdown.

Journal ArticleDOI
TL;DR: It is suggested that consumption and supplementation of natural-derived anti-oxidant neuroprotective agent such as anthocyanins may be beneficial and suggest new dietary-supplement strategies for intervention in and prevention of progressive neurodegenerative diseases, such as AD.
Abstract: Well-established studies have shown an elevated level of reactive oxygen species (ROS) that induces oxidative stress in the Alzheimer's disease (AD) patient's brain and an animal model of AD. Herein, we investigated the underlying anti-oxidant neuroprotective mechanism of natural dietary supplementation of anthocyanins extracted from Korean black beans in the amyloid precursor protein/presenilin-1 (APP/PS1) mouse model of AD. Both in vivo (APP/PS1 mice) and in vitro (mouse hippocampal HT22 cells) results demonstrated that anthocyanins regulate the phosphorylated-phosphatidylinositol 3-kinase-Akt-glycogen synthase kinase 3 beta (p-PI3K/Akt/GSK3β) pathways and consequently attenuate amyloid beta oligomer (AβO)-induced elevations in ROS level and oxidative stress via stimulating the master endogenous anti-oxidant system of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (Nrf2/HO-1) pathways and prevent apoptosis and neurodegeneration by suppressing the apoptotic and neurodegenerative markers such as activation of caspase-3 and PARP-1 expression as well as the TUNEL and Fluoro-Jade B-positive neuronal cells in the APP/PS1 mice. In vitro ApoTox-Glo™ Triplex assay results also showed that anthocyanins act as a potent anti-oxidant neuroprotective agent and reduce AβO-induced neurotoxicity in the HT22 cells via PI3K/Akt/Nrf2 signaling. Importantly, anthocyanins improve memory-related pre- and postsynaptic protein markers and memory functions in the APP/PS1 mice. In conclusion, our data suggested that consumption and supplementation of natural-derived anti-oxidant neuroprotective agent such as anthocyanins may be beneficial and suggest new dietary-supplement strategies for intervention in and prevention of progressive neurodegenerative diseases, such as AD.

Journal ArticleDOI
TL;DR: This review examines the regulation of ROS metabolism in the context of PI3K-driven tumors with particular emphasis on four main areas of research, including opportunities for therapeutic exploiting redox metabolism in PIK3CA mutant tumors.
Abstract: Metabolic rewiring and the consequent production of reactive oxygen species (ROS) are necessary to promote tumorigenesis. At the nexus of these cellular processes is the aberrant regulation of oncogenic signaling cascades such as the phosphoinositide 3-kinase and AKT (PI3K/Akt) pathway, which is one of the most frequently dysregulated pathways in cancer. In this review, we examine the regulation of ROS metabolism in the context of PI3K-driven tumors with particular emphasis on four main areas of research. (1) Stimulation of ROS production through direct modulation of mitochondrial bioenergetics, activation of NADPH oxidases (NOXs), and metabolic byproducts associated with hyperactive PI3K/Akt signaling. (2) The induction of pro-tumorigenic signaling cascades by ROS as a consequence of phosphatase and tensin homolog and receptor tyrosine phosphatase redox-dependent inactivation. (3) The mechanisms through which PI3K/Akt activation confers a selective advantage to cancer cells by maintaining redox homeostasis. (4) Opportunities for therapeutically exploiting redox metabolism in PIK3CA mutant tumors and the potential for implementing novel combinatorial therapies to suppress tumor growth and overcome drug resistance. Further research focusing on the multi-faceted interactions between PI3K/Akt signaling and ROS metabolism will undoubtedly contribute to novel insights into the extensive pro-oncogenic effects of this pathway, and the identification of exploitable vulnerabilities for the treatment of hyperactive PI3K/Akt tumors.

Journal ArticleDOI
20 Jun 2018-Nature
TL;DR: A new mode of oncogenic BCR signalling is discovered in ibrutinib-responsive cell lines and biopsies, coordinated by a multiprotein supercomplex formed by MYD88, TLR9 and the BCR (hereafter termed the My-T-BCR supercomplex).
Abstract: B cell receptor (BCR) signalling has emerged as a therapeutic target in B cell lymphomas, but inhibiting this pathway in diffuse large B cell lymphoma (DLBCL) has benefited only a subset of patients1. Gene expression profiling identified two major subtypes of DLBCL, known as germinal centre B cell-like and activated B cell-like (ABC)2,3, that show poor outcomes after immunochemotherapy in ABC. Autoantigens drive BCR-dependent activation of NF-κB in ABC DLBCL through a kinase signalling cascade of SYK, BTK and PKCβ to promote the assembly of the CARD11-BCL10-MALT1 adaptor complex, which recruits and activates IκB kinase4-6. Genome sequencing revealed gain-of-function mutations that target the CD79A and CD79B BCR subunits and the Toll-like receptor signalling adaptor MYD885,7, with MYD88(L265P) being the most prevalent isoform. In a clinical trial, the BTK inhibitor ibrutinib produced responses in 37% of cases of ABC1. The most striking response rate (80%) was observed in tumours with both CD79B and MYD88(L265P) mutations, but how these mutations cooperate to promote dependence on BCR signalling remains unclear. Here we used genome-wide CRISPR-Cas9 screening and functional proteomics to determine the molecular basis of exceptional clinical responses to ibrutinib. We discovered a new mode of oncogenic BCR signalling in ibrutinib-responsive cell lines and biopsies, coordinated by a multiprotein supercomplex formed by MYD88, TLR9 and the BCR (hereafter termed the My-T-BCR supercomplex). The My-T-BCR supercomplex co-localizes with mTOR on endolysosomes, where it drives pro-survival NF-κB and mTOR signalling. Inhibitors of BCR and mTOR signalling cooperatively decreased the formation and function of the My-T-BCR supercomplex, providing mechanistic insight into their synergistic toxicity for My-T-BCR+ DLBCL cells. My-T-BCR supercomplexes characterized ibrutinib-responsive malignancies and distinguished ibrutinib responders from non-responders. Our data provide a framework for the rational design of oncogenic signalling inhibitors in molecularly defined subsets of DLBCL.

Journal ArticleDOI
TL;DR: B cells and B CR-related kinases also play a role in the microenvironment of solid tumours, such as squamous cell carcinoma and pancreatic cancer, and therefore targeting B cells or BCR- related kinases may have anticancer activity beyond B cell malignancies.
Abstract: B cell receptor (BCR) signalling is crucial for normal B cell development and adaptive immunity. BCR signalling also supports the survival and growth of malignant B cells in patients with B cell leukaemias or lymphomas. The mechanism of BCR pathway activation in these diseases includes continuous BCR stimulation by microbial antigens or autoantigens present in the tissue microenvironment, activating mutations within the BCR complex or downstream signalling components and ligand-independent tonic BCR signalling. The most established agents targeting BCR signalling are Bruton tyrosine kinase (BTK) inhibitors and PI3K isoform-specific inhibitors, and their introduction into the clinic is rapidly changing how B cell malignancies are treated. B cells and BCR-related kinases, such as BTK, also play a role in the microenvironment of solid tumours, such as squamous cell carcinoma and pancreatic cancer, and therefore targeting B cells or BCR-related kinases may have anticancer activity beyond B cell malignancies.

Journal ArticleDOI
18 May 2018-Science
TL;DR: It is proposed that NUFIP1 is a receptor for the selective autophagy of ribosomes, and nutrient levels and mTOR dynamically modulate the lysosomal proteome.
Abstract: The lysosome degrades and recycles macromolecules, signals to the master growth regulator mTORC1 [mechanistic target of rapamycin (mTOR) complex 1], and is associated with human disease. We performed quantitative proteomic analyses of rapidly isolated lysosomes and found that nutrient levels and mTOR dynamically modulate the lysosomal proteome. Upon mTORC1 inhibition, NUFIP1 (nuclear fragile X mental retardation-interacting protein 1) redistributes from the nucleus to autophagosomes and lysosomes. Upon these conditions, NUFIP1 interacts with ribosomes and delivers them to autophagosomes by directly binding to microtubule-associated proteins 1A/1B light chain 3B (LC3B). The starvation-induced degradation of ribosomes via autophagy (ribophagy) depends on the capacity of NUFIP1 to bind LC3B and promotes cell survival. We propose that NUFIP1 is a receptor for the selective autophagy of ribosomes.

Journal ArticleDOI
TL;DR: Clinical application of multiplex sequencing can identify biomarkers of treatment response to contemporary systemic therapies in metastatic esophagogastric cancer and guide strategies to overcome drug resistance, and sheds light on the biological complexity and the dynamic nature of therapeutic resistance.
Abstract: The incidence of esophagogastric cancer is rapidly rising, but only a minority of patients derive durable benefit from current therapies. Chemotherapy as well as anti-HER2 and PD-1 antibodies are standard treatments. To identify predictive biomarkers of drug sensitivity and mechanisms of resistance, we implemented prospective tumor sequencing of patients with metastatic esophagogastric cancer. There was no association between homologous recombination deficiency defects and response to platinum-based chemotherapy. Patients with microsatellite instability-high tumors were intrinsically resistant to chemotherapy but more likely to achieve durable responses to immunotherapy. The single Epstein-Barr virus-positive patient achieved a durable, complete response to immunotherapy. The level of ERBB2 amplification as determined by sequencing was predictive of trastuzumab benefit. Selection for a tumor subclone lacking ERBB2 amplification, deletion of ERBB2 exon 16, and comutations in the receptor tyrosine kinase, RAS, and PI3K pathways were associated with intrinsic and/or acquired trastuzumab resistance. Prospective genomic profiling can identify patients most likely to derive durable benefit to immunotherapy and trastuzumab and guide strategies to overcome drug resistance.Significance: Clinical application of multiplex sequencing can identify biomarkers of treatment response to contemporary systemic therapies in metastatic esophagogastric cancer. This large prospective analysis sheds light on the biological complexity and the dynamic nature of therapeutic resistance in metastatic esophagogastric cancers. Cancer Discov; 8(1); 49-58. ©2017 AACR.See related commentary by Sundar and Tan, p. 14See related article by Pectasides et al., p. 37This article is highlighted in the In This Issue feature, p. 1.

Journal ArticleDOI
TL;DR: CiRS‐7 may act as a prospective prognostic biological marker and a promising therapeutic target for GC and was probably an independent risk factor of overall survival.
Abstract: Gastric cancer (GC) has one of the highest mortality rates of malignancies globally. Currently, ciRS-7, a novel circular RNA, has emerged as a potential sponge for miR-7. However, few studies on ciRS-7 in GC have been performed. In this study, we investigated the clinical significance and function of ciRS-7 in GC. First, the expression levels of ciRS-7 in 102 primary GC tissues and the matched para-carcinoma tissues were evaluated and the clinical relevance was confirmed in an independent validation cohort (n = 154). Second, the effects of ciRS-7 on miR-7, PTEN, and PI3K were evaluated. Finally, the function of ciRS-7 in GC was analyzed with cell lines and nude mice. The expression of ciRS-7 was significantly upregulated in GC tissues compared with the matched para-carcinoma tissues (P = 0.0023), and the upregulation of ciRS-7 was linked to poor survival in the testing (P = 0.0143) and validation cohort (P = 0.0061). Multivariate survival analysis revealed that ciRS-7 was probably an independent risk factor of overall survival (P < 0.05). Furthermore, overexpression of ciRS-7 blocked the miR-7-induced tumor suppression in MGC-803 and HGC-27 cells and led to a more aggressive oncogenic phenotype, via antagonizing miR-7-mediated PTEN/PI3K/AKT pathway. ciRS-7 may act as a prospective prognostic biological marker and a promising therapeutic target for GC. J. Cell. Biochem. 119: 440-446, 2018. © 2017 Wiley Periodicals, Inc.

Journal ArticleDOI
TL;DR: In vivo data showed that administration of apigenin decreased tumor growth and autophagy inhibition by 3-MA significantly enhanced the anticancer effect of apigin, and results reveal that apigen in inhibits cell proliferation and induces autophagic via suppressing the PI3K/Akt/mTOR pathway.

Journal ArticleDOI
TL;DR: The purpose of this review is to summarize the research progress of PI3K/Akt signaling pathway in erythropoiesis and glycolysis and identify the key proteins involved in cell proliferation, apoptosis inhibition, cell migration, vesicle transport and cell cancerous transformation.
Abstract: The purpose of this review is to summarize the research progress of PI3K/Akt signaling pathway in erythropoiesis and glycolysis. Phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) is activated by numerous genes and leads to protein kinase B (Akt) binding to the cell membrane, with the help of phosphoinositide-dependent kinase, in the PI3K/Akt signal transduction pathway. Threonine and serine phosphorylation contribute to Akt translocation from the cytoplasm to the nucleus and further mediates enzymatic biological effects, including those involved in cell proliferation, apoptosis inhibition, cell migration, vesicle transport and cell cancerous transformation. As a key downstream protein of the PI3K/Akt signaling pathway, hypoxia-inducible factor (HIF)-1 is closely associated with the concentration of oxygen in the environment. Maintaining stable levels of HIF-1 protein is critical under normoxic conditions; however, HIF-1 levels quickly increase under hypoxic conditions. HIF-1α is involved in the acute hypoxic response associated with erythropoietin, whereas HIF-2α is associated with the response to chronic hypoxia. Furthermore, PI3K/Akt can reduce the synthesis of glycogen and increase glycolysis. Inhibition of glycogen synthase kinase 3β activity by phosphorylation of its N-terminal serine increases accumulation of cyclin D1, which promotes the cell cycle and improves cell proliferation through the PI3K/Akt signaling pathway. The PI3K/Akt signaling pathway is closely associated with a variety of enzymatic biological effects and glucose metabolism.

Journal ArticleDOI
TL;DR: This review summarizes the current knowledge about the therapeutic potential of targeting Wnt pathway with particular emphasis on preclinical/clinical studies in treatment of colorectal cancer.
Abstract: Wnt/β-catenin pathway is one of the main/frequent dysregulated pathways in several tumor types, including colon cancer. Aberrant activation of this pathway is associated with cell proliferation, invasive behaviors, and cell resistance, suggesting its potential value as a therapeutic target in treatment of CRC. Several agents have been developed for targeting of this pathway (e.g, natural agents: curcumin, 3,3-diindolylmethane, phytoestrogen; Synthetic/small Wnt inhibitors: Rofecoxib; PRI-724, CWP232291; and monoclonal antibody against frizzled receptors, Vanituctumab). This review summarizes the current knowledge about the therapeutic potential of targeting Wnt pathway with particular emphasis on preclinical/clinical studies in treatment of colorectal cancer. J. Cell. Biochem. 118: 1979-1983, 2017. © 2017 Wiley Periodicals, Inc.

Journal ArticleDOI
Hua Liu1, Haoyu Deng1, Yajie Zhao1, Can Li1, Yu Liang1 
TL;DR: A novel experimental basis for targeted therapy for thyroid cancer from the aspect of lncRNA-miRNA-mRNA interaction is provided, confirming the negative interaction between XIST and miR-34a and modulating thyroid cancer cell proliferation and tumor growth.
Abstract: Thyroid cancer is one of the most prevalent malignancies in endocrine system. Further understanding and revealing the molecular mechanism underlying thyroid cancer are indispensable for the development of effective diagnosis and treatments. In the present study, we attempted to provide novel basis for targeted therapy for thyroid cancer from the aspect of lncRNA-miRNA-mRNA interaction. The expression and cellular function of XIST (X-inactive specific transcript) was determined. miRNAs which may be direct targets of XIST were screened for from online GEO database and miR-34a was selected. Next, the predicted binding between XIST and miR-34a, and the dynamic effect of XIST and miR-34a on downstream MET (hepatocyte growth factor receptor)-PI3K (phosphoinositide 3-kinase)-AKT (α-serine/threonine-protein kinase) signaling was evaluated. XIST was significantly up-regulated in thyroid cancer tissues and cell lines; XIST knockdown suppressed the cell proliferation in vivo and the tumor growth in vitro. Based on online database and online tool prediction results, miR-34a was underexpressed in thyroid cancer and might be a direct target of XIST. Herein, we confirmed the negative interaction between XIST and miR-34a; moreover, XIST knockdown could reduce the protein levels of MET, a downstream target of miR-34a, and the phosphorylation of PI3K and AKT. In thyroid cancer tissues, MET mRNA and protein levels of MET were up-regulated; MET was positively correlated with XIST while negatively correlated with miR-34a, further confirming that XIST serves as a ceRNA for miR-34a through sponging miR-34a, competing with MET for miR-34a binding, and finally modulating thyroid cancer cell proliferation and tumor growth. In the present study, we provided novel experimental basis for targeted therapy for thyroid cancer from the aspect of lncRNA-miRNA-mRNA interaction.

Journal ArticleDOI
12 Jan 2018-Cancers
TL;DR: The recent cellular signaling pathways regulated by TOR, their interconnections to autophagy, and the clinical implications of TOR inhibitors in cancer are discussed.
Abstract: TOR (target of rapamycin), an evolutionarily-conserved serine/threonine kinase, acts as a central regulator of cell growth, proliferation and survival in response to nutritional status, growth factor, and stress signals. It plays a crucial role in coordinating the balance between cell growth and cell death, depending on cellular conditions and needs. As such, TOR has been identified as a key modulator of autophagy for more than a decade, and several deregulations of this pathway have been implicated in a variety of pathological disorders, including cancer. At the molecular level, autophagy regulates several survival or death signaling pathways that may decide the fate of cancer cells; however, the relationship between autophagy pathways and cancer are still nascent. In this review, we discuss the recent cellular signaling pathways regulated by TOR, their interconnections to autophagy, and the clinical implications of TOR inhibitors in cancer.

Journal ArticleDOI
TL;DR: Investigation of the PI3K/Akt signaling pathway may provide further insights of the potential targets for treating diseases accompanied by H-I and the effects of HIF-1 on ischemic outcomes may be dependent on the H- I duration, animal age and species.
Abstract: Hypoxia‑ischemia (H‑I) is frequently observed in perinatal asphyxia and other diseases. It can lead to serious cardiac injury, cerebral damage, neurological disability and mortality. Previous studies have demonstrated that the phosphatidylinositol‑3 kinase (PI3K)/protein kinase B (Akt) signaling pathway, which regulates a wide range of cellular functions, is involved in the resistance response to H‑I through the activation of proteins associated with survival and inactivation of apoptosis‑associated proteins. It can also regulate the expression of hypoxia‑induced factor‑1α (HIF‑1α). HIF‑1α can further regulate the expression of downstream proteins involved in glucose metabolism and angiogenesis, such as vascular endothelial growth factor and erythropoietin, to facilitate ischemic adaptation. Notably, HIF‑1α may also induce detrimental effects. The effects of HIF‑1 on ischemic outcomes may be dependent on the H‑I duration, animal age and species. Thus, further investigation of the PI3K/Akt signaling pathway may provide further insights of the potential targets for treating diseases accompanied by H‑I.

Journal ArticleDOI
TL;DR: In humans, IL‐37 likely functions to limit excessive inflammation: accordingly,IL‐37 levels are abnormal in patients with inflammatory and autoimmune diseases and the potential for development of this cytokine as a therapeutic agent is discussed.
Abstract: IL-37 is a unique member of the IL-1 family of cytokines, which functions as a natural suppressor of inflammatory and immune responses. Immune and non-immune cells produce IL-37 precursor following pro-inflammatory stimuli. Following activating cleavage by caspase-1, mature IL-37 translocates to the nucleus, where it suppresses transcription of pro-inflammatory genes. Both precursor and mature IL-37 are also secreted in the extracellular space, where they bind IL-18Rα and recruit the IL-1R8 (formerly TIR8 or SIGIRR), which transduces anti-inflammatory signals by suppressing NF-kB and MAPK and by activating Mer-PTEN-DOK pathways. During inflammation, IL-37 restores the metabolism of the cell by reducing succinate, inhibiting mTOR, and activating AMPK. Transgenic mice expressing human IL-37 and wild type mice treated with recombinant human IL-37 are protected from several experimental models of inflammation, including endotoxin shock, colitis, lung and spinal cord injury, coronary artery disease, arthritis and inflammation-induced fatigue, while also exhibiting reduced adaptive immune responses. In humans, IL-37 likely functions to limit excessive inflammation: accordingly, IL-37 levels are abnormal in patients with inflammatory and autoimmune diseases. In this review, we provide an overview of the discovery and biology of IL-37, and discuss the potential for development of this cytokine as a therapeutic agent.