scispace - formally typeset
Search or ask a question

Showing papers on "Pichia pastoris published in 2006"


Journal ArticleDOI
TL;DR: It is demonstrated that human antibodies with specific human N-glycan structures can be produced in glycoengineered lines of the yeast Pichia pastoris and that antibody-mediated effector functions can be optimized by generating specific glycoforms.
Abstract: As the fastest growing class of therapeutic proteins, monoclonal antibodies (mAbs) represent a major potential drug class Human antibodies are glycosylated in their native state and all clinically approved mAbs are produced by mammalian cell lines, which secrete mAbs with glycosylation structures that are similar, but not identical, to their human counterparts Glycosylation of mAbs influences their interaction with immune effector cells that kill antibody-targeted cells Here we demonstrate that human antibodies with specific human N-glycan structures can be produced in glycoengineered lines of the yeast Pichia pastoris and that antibody-mediated effector functions can be optimized by generating specific glycoforms Glycoengineered P pastoris provides a general platform for producing recombinant antibodies with human N-glycosylation

515 citations


Journal ArticleDOI
08 Sep 2006-Science
TL;DR: Yeast is a widely used recombinant protein expression system expanded by engineering the yeast Pichia pastoris to secrete human glycoproteins with fully complex terminally sialylated N-glycans, allowing it to replicate the sequential steps of human glycosylation.
Abstract: Yeast is a widely used recombinant protein expression system. We expanded its utility by engineering the yeast Pichia pastoris to secrete human glycoproteins with fully complex terminally sialylated N-glycans. After the knockout of four genes to eliminate yeast-specific glycosylation, we introduced 14 heterologous genes, allowing us to replicate the sequential steps of human glycosylation. The reported cell lines produce complex glycoproteins with greater than 90% terminal sialylation. Finally, to demonstrate the utility of these yeast strains, functional recombinant erythropoietin was produced.

498 citations


Journal ArticleDOI
TL;DR: The methylotrophic yeast Pichia pastoris has been widely reported as a suitable expression system for heterologous protein production and the use of mixed substrates, on-line monitoring of the key fermentation parameters (methanol) and control algorithms applied to the bioprocess are reviewed and discussed in detail.
Abstract: The methylotrophic yeast Pichia pastoris has been widely reported as a suitable expression system for heterologous protein production. The use of different phenotypes under PAOX promoter, other alternative promoters, culture medium, and operational strategies with the objective to maximize either yield or productivity of the heterologous protein, but also to obtain a repetitive product batch to batch to get a robust process for the final industrial application have been reported. Medium composition, kinetics growth, fermentation operational strategies from fed-batch to continuous cultures using different phenotypes with the most common PAOX promoter and other novel promoters (GAP, FLD, ICL), the use of mixed substrates, on-line monitoring of the key fermentation parameters (methanol) and control algorithms applied to the bioprocess are reviewed and discussed in detail.

333 citations


Journal ArticleDOI
TL;DR: In this paper, the role of cis and trans acting factors in the expression of methanol utilisation pathway genes is reviewed both in the context of the native cell environment as well as in heterologous hosts.
Abstract: Methylotrophic yeasts such as Candida boidinii, Hansenula polymorpha, Pichia methanolica and Pichia pastoris are an emerging group of eukaryotic hosts for recombinant protein production with an ever increasing number of applications during the last 30 years. Their applications are linked to the use of strong methanol-inducible promoters derived from genes of the methanol utilisation pathway. These promoters are tightly regulated, highly repressed in presence of non-limiting concentrations of glucose in the medium and strongly induced if methanol is used as carbon source. Several factors involved in this tight control and their regulatory effects have been described so far. This review summarises available data about the regulation of promoters from methanol utilisation pathway genes. Furthermore, the role of cis and trans acting factors (e.g. transcription factors, glucose processing enzymes) in the expression of methanol utilisation pathway genes is reviewed both in the context of the native cell environment as well as in heterologous hosts.

217 citations


Journal ArticleDOI
TL;DR: Four Methylobacterium extorquens strains were isolated from strawberry leaves, and one strain, called ME4, was tested for its ability to promote the growth of various plant seedlings, suggesting the production of a growth-promoting agent by the methylotroph.
Abstract: Four Methylobacterium extorquens strains were isolated from strawberry (Fragaria3ananassa cv. Elsanta) leaves, and one strain, called ME4, was tested for its ability to promote the growth of various plant seedlings. Seedling weight and shoot length of Nicotiana tabacum, Lycopersicon esculentum, Sinapis alba, and Fragaria vesca increased significantly in the presence of the pink-pigmented facultative methylotroph (PPFM), but the germination behaviour of seeds from six other plants was not affected. The cell-free supernatant of the bacterial culture stimulated germination, suggesting the production of a growth-promoting agent by the methylotroph. Methanol emitted from N. tabacum seedlings, as determined by proton-transfer-reaction mass spectrometry (PTR-MS), ranged from 0.4 to 0.7 ppbv (parts per billion by volume), while significantly lower levels (0.005 to 0.01 ppbv) of the volatile alcohol were measured when the seedlings were co-cultivated with M. extorquens ME4, demonstrating the consumption of the gaseous methanol by the bacteria. Additionally, by using cells of the methylotrophic yeast Pichia pastoris transformed with the pPICHS/GFP vector harbouring a methanol-sensitive promoter in combination with the green fluorescence protein (GFP) reporter gene, stomata were identified as the main source of the methanol emission on tobacco cotyledons. Methylobacterium extorquens strains can nourish themselves using the methanol released by the stomata and release an agent promoting the growth of the seedlings of some crop plants.

214 citations


Journal ArticleDOI
TL;DR: It is concluded that protein folding and heterodimer assembly in the ER are rate limiting steps in Fab secretion, and the formation of interchain disulfide bonds can be seen as a major rate limiting factor to Fab assembly and subsequent secretion.
Abstract: The methylotrophic yeast Pichia pastoris has been used for the expression of many proteins, including antibody fragments. However, limitations became obvious especially when secreting heterodimeric Fab fragments. Up-to-date, antibody fragments have only been expressed under control of the strong inducible alcohol oxidase 1 (AOX1) promoter, which may stress the cells by excessive transcription. Here, we examined the secretion characteristics of single chain and Fab fragments of two different monoclonal anti-HIV1 antibodies (2F5 and 2G12) with both the AOX1 and the glyceraldehyde-3-phosphate dehydrogenase (GAP) promoter. Also, the influences of different secretion leaders and strains were evaluated. Interestingly, secretion was only achieved when using the GAP promoter and the Saccharomyces cerevisiae mating factor alpha (MFalpha leader), whereas there was no difference between the two P. pastoris strains. During fed batch fermentation of a 2F5 Fab expressing strain, intracellular retention of Fab heavy chains was observed, while both intact Fab and single light chain molecules were only detected in the supernatants. This led to the conclusion that protein folding and heterodimer assembly in the ER are rate limiting steps in Fab secretion. To alleviate this limitation, S. cerevisiae protein disulfide isomerase (PDI) and the unfolded protein response (UPR) transcription factor HAC1 were constitutively overexpressed in P. pastoris. While the overexpression of HAC1 led to a moderate increase of Fab secretion of 1.3-fold, PDI enabled an increase of the Fab level by 1.9-fold. Hence, the formation of interchain disulfide bonds can be seen as a major rate limiting factor to Fab assembly and subsequent secretion.

212 citations


Journal ArticleDOI
TL;DR: Overall, the number of GPCR targets that can be produced in the authors' laboratories in sufficient amounts for structural studies has more than doubled, and a general approach for increasing yields of functional mammalian GPCRs severalfold over standard expression conditions is suggested.
Abstract: We have optimized the expression level of 20 mammalian G protein-coupled receptors (GPCRs) in the methylotrophic yeast Pichia pastoris We found that altering expression parameters, including growth temperature, and supplementation of the culture medium with specific GPCR ligands, histidine, and DMSO increased the amount of functional receptor, as assessed by ligand binding, by more than eightfold over standard expression conditions Unexpectedly, we found that the overall amount of GPCR proteins expressed, in most cases, varied only marginally between standard and optimized expression conditions Accordingly, the optimized expression conditions resulted in a marked fractional increase in the ratio of ligand binding-competent receptor to total expressed receptor The results of this study suggest a general approach for increasing yields of functional mammalian GPCRs severalfold over standard expression conditions by using a set of optimized expression condition parameters that we have characterized for the Pichia expression system Overall, we have more than doubled the number of GPCR targets that can be produced in our laboratories in sufficient amounts for structural studies

178 citations


Journal ArticleDOI
TL;DR: Overexpression of the endoplasmic reticulum resident, homologous chaperone protein, protein disulfide isomerase (PDI) was able to increase the secretion of (Na‐ASP1) protein in high copy clones, and increase in secreted Na‐ ASP1 secretion is correlated well with the PDI copy number.
Abstract: A potential vaccine candidate, Necator americanus secretory protein (Na-ASP1), against hookworm infections, has been expressed in Pichia pastoris. Na-ASP1, a 45 kDa protein containing 20 cysteines, was directed outside the cell by fusing the protein to the preprosequence of the alpha-mating factor of Saccharomyces cerevisiae. Most of the protein produced by single copy clones was secreted outside the cell. However, increasing gene copy number of Na-ASP1 protein in P. pastoris saturated secretory capacity and therefore, decreased the amount of secreted protein in clones harboring multiple copies of Na-ASP1 gene. Overexpression of the endoplasmic reticulum (ER) resident, homologous chaperone protein, protein disulfide isomerase (PDI) was able to increase the secretion of (Na-ASP1) protein in high copy clones. The effect of PDI levels on secretion of Na-ASP1 protein was examined in clones with varying copy number of PDI gene. Increase in secreted Na-ASP1 secretion is correlated well with the PDI copy number. Increasing levels of PDI also increased overall Na-ASP1 protein production in all the clones. Nevertheless, there was still accumulation of intracellular Na-ASP1 protein in P. pastoris clones over-expressing Na-ASP1 and PDI proteins.

171 citations


Journal ArticleDOI
TL;DR: It is proposed that MXR1 is the P. pastoris homologue of S. cerevisiae ADR1 but that it has gained new functions and lost others through evolution as a result of changes in the spectrum of genes that it controls.
Abstract: Growth of the yeast Pichia pastoris on methanol induces the expression of genes whose products are required for its metabolism. Three of the methanol pathway enzymes are located in an organelle called the peroxisome. As a result, both methanol pathway enzymes and proteins involved in peroxisome biogenesis (PEX proteins) are induced in response to this substrate. The most highly regulated of these genes is AOX1, which encodes alcohol oxidase, the first enzyme of the methanol pathway, and a peroxisomal enzyme. To elucidate the molecular mechanisms responsible for methanol regulation, we identify genes required for the expression of AOX1. Mutations in one gene, named MXR1 (methanol expression regulator 1), result in strains that are unable to (i) grow on the peroxisomal substrates methanol and oleic acid, (ii) induce the transcription of AOX1 and other methanol pathway and PEX genes, and (iii) form normal-appearing peroxisomes in response to methanol. MXR1 encodes a large protein with a zinc finger DNA-binding domain near its N terminus that has similarity to Saccharomyces cerevisiae Adr1p. In addition, Mxr1p is localized to the nucleus in cells grown on methanol or other gluconeogenic substrates. Finally, Mxr1p specifically binds to sequences upstream of AOX1. We conclude that Mxr1p is a transcription factor that is necessary for the activation of many genes in response to methanol. We propose that MXR1 is the P. pastoris homologue of S. cerevisiae ADR1 but that it has gained new functions and lost others through evolution as a result of changes in the spectrum of genes that it controls.

148 citations


Journal ArticleDOI
TL;DR: In this paper, a β-N-acetylglucosaminidase with a potential transmembrane domain was cloned and expressed in Pichia pastoris, which exhibited a substrate specificity similar to that previously described for a hexosamidase activity from Sf-9 cells, i.e., it hydrolyzed exclusively the GlcNAc residue attached to the α 1,3-linked mannose of the core pentasaccharide of N-glycans.

147 citations


01 Jan 2006
TL;DR: The fdl gene encodes a novel hexosaminidase responsible for the occurrence of paucimannosidic N-glycans in Drosophila, and the ratio of structures with terminal GlcNAc over those without was drastically increased in the fdl-deficient flies.
Abstract: Most processed, e.g. fucosylated, N-glycans on insect glycoproteins terminate in mannose, yet the relevant modifying enzymes require the prior action of N-acetylglucosaminyltransferase I. This led to the hypothesis that a hexosaminidase acts during the course of N-glycan maturation. To determine whether the Drosophila melanogaster genome indeed encodes such an enzyme, a cDNA corresponding to fused lobes (fdl), a putative -N-acetylglucosaminidase with a potential transmembrane domain, was cloned. When expressed in Pichia pastoris, the enzyme exhibited a substrate specificity similar to that previously described for a hexosaminidase activity from Sf-9 cells, i.e. it hydrolyzed exclusively the GlcNAc residue attached to the 1,3-linked mannose of the core pentasaccharide of N-glycans. It also hydrolyzed p-nitrophenyl-N-acetylglucosaminide, but not chitooligosaccharides; in contrast, Drosophila HEXO1 and HEXO2 expressed in Pichia cleaved both these substrates but not N-glycans. The localization of recombinant FDL tagged with green fluorescent protein in Drosophila S2 cells by immunoelectron microscopy showed that this enzyme transits through the Golgi, is present on the plasma membrane and in multivesicular bodies, and is secreted. Finally, the N-glycans of two lines of fdl mutant flies were analyzed by mass spectrometry and reversed-phase high-performance liquid chromatography. The ratio of structures with terminal GlcNAc over those without (i.e. paucimannosidic N-glycans) was drastically increased in the fdldeficient flies. Therefore, we conclude that the fdl gene encodes a novel hexosaminidase responsible for the occurrence of paucimannosidic N-glycans in Drosophila.

Journal ArticleDOI
TL;DR: Improved conditions for downstream processing superior for the P. pastoris expression systems compared to other systems, which either need complex media or rely on intracellular production, allow for interfacing of cultivation with downstream processing in an integrated fashion.
Abstract: Developments in process techniques for production and recovery of heterologous proteins with Pichia pastoris are presented. Limitations for the standard techniques are described, and alternative techniques that solve the limitations problems are reviewed together with the methods that resulted in higher productivity of the P. pastoris processes. The main limitations are proteolysis of the secreted products and cell death in the high cell density bioreactor cultures. As a consequence, both low productivity and lower quality of the feedstock for downstream processing are achieved in processes hampered with these problems. Methods for exploring proteolysis and cell death are also presented. Solving the problems makes the conditions for downstream processing superior for the P. pastoris expression systems compared to other systems, which either need complex media or rely on intracellular production. These improved conditions allow for interfacing of cultivation with downstream processing in an integrated fashion.

Journal ArticleDOI
TL;DR: Functional studies showed that the A21 scFv could be internalized with high efficiency after binding to the ErbB2-overexpressing cells, suggesting this regent may prove especially useful for Erb B2-targeted immunotherapy.

Journal ArticleDOI
Kaoru Kobayashi1
TL;DR: Results from structural analysis suggest that purified rHSA possesses an identical conformation to plasma derived human albumin (pdHA) and no difference from pdHA has been observed in neo-antigenicity.

Journal ArticleDOI
TL;DR: Overall, BBE is shown to exhibit typical flavoprotein oxidase properties as exemplified by the occurrence of an anionic flavin semiquinone species and formation of a flavin N(5)-sulfite adduct.

Journal ArticleDOI
TL;DR: Sequence based search methods reveal that human VKORC1 belongs to a large family of homologous genes found in vertebrates, insects, plants, protists, archea, and bacteria, and all orthologs share five completely conserved amino acids, including two cysteines found in a tetrapeptide motif presumably required for redox function.
Abstract: Vitamin K epoxide, a by-product of the carboxylation of blood coagulation factors, is reduced to vitamin K by an enzymatic system possessing vitamin K epoxide reductase (VKOR) activity. This system is the target of coumarin-derived drugs widely used in thrombosis therapy and prophylaxis. Recently, the key protein of the VKOR system has been identified. The human VKORC1 gene maps to chromosome 16 and consists of 3 exons encoding a 163-amino acid integral ER membrane protein with three or four predicted transmembrane α- helices. Expression of human VKORC1 in Spodoptera frugiperda (Sf9) cells and in Pichia pastoris results in enhanced VKOR activity over low endogenous constitutive levels. Sequence based search methods reveal that human VKORC1 belongs to a large family of homologous genes found in vertebrates, insects, plants, protists, archea, and bacteria. All orthologs share five completely conserved amino acids, including two cysteines found in a tetrapeptide motif presumably required for redox function. ...

Journal ArticleDOI
TL;DR: A model for product accumulation in fed batch based on iterative calculation in Microsoft Excel spreadsheets is developed and the Solver software is used to optimize the time course of the media feed in order to maximize the volumetric productivity.
Abstract: Background Secretion of heterologous proteins depends both on biomass concentration and on the specific product secretion rate, which in turn is not constant at varying specific growth rates. As fed batch processes usually do not maintain a steady state throughout the feed phase, it is not trivial to model and optimize such a process by mathematical means.

Journal ArticleDOI
TL;DR: High‐throughput methodologies for cloning, expression screening and protein production in eukaryotic systems, focused on yeast, Saccharomyces cerevisiae and baculovirus‐infected insect cells, are developed and implemented.
Abstract: The production of sufficient quantities of protein is an essential prelude to a structure determination, but for many viral and human proteins this cannot be achieved using prokaryotic expression systems. Groups in the Structural Proteomics In Europe (SPINE) consortium have developed and implemented high-throughput (HTP) methodologies for cloning, expression screening and protein production in eukaryotic systems. Studies focused on three systems: yeast (Pichia pastoris and Saccharomyces cerevisiae), baculovirus-infected insect cells and transient expression in mammalian cells. Suitable vectors for HTP cloning are described and results from their use in expression screening and protein-production pipelines are reported. Strategies for co-expression, selenomethionine labelling (in all three eukaryotic systems) and control of glycosylation (for secreted proteins in mammalian cells) are assessed.

Journal ArticleDOI
TL;DR: The biochemical and kinetic characterization of the recombinant protein suggests potential technological applications for this enzyme and shows high activity in the presence of organic solvents and a high decolourization capacity towards azo, triarylmethane, indigo carmine and anthraquinonic dyes.
Abstract: Background: Fungal laccases are useful enzymes for industrial applications; they exhibit broad substrate specificity and thus are able to oxidize a variety of xenobiotic compounds including chlorinated phenolics, synthetic dyes, pesticides and polycyclic aromatic hydrocarbons. Unfortunately, the biotechnological exploitation of laccases can be hampered by the difficulties concerning the enzyme production by the native hosts. Results: In order to obtain a simple and efficient source of laccase, the lcc1 cDNA isolated from the white-rot fungus Trametes trogii has been successfully expressed in the methylotrophic yeast Pichia pastoris under the control of the methanol induced alcohol oxidase promoter P AOX1 . The recombinant Lcc1 was produced as a secreted protein with the native N-terminal prepropeptide for signal trafficking, and thus easily recovered from the culture medium. At the 1-liter scale, as calculated on the basis of the specific activity, the recombinant protein was produced at a yield of 17 mg/l. The highest production level obtained in fed-batch culture was 2520 U/l, corresponding to a specific productivity of 31.5 U/g biomass. The purified recombinant laccase exhibited a behaviour similar to the main laccase produced by T. trogii. Lcc1 showed high activity in the presence of organic solvents and a high decolourization capacity towards azo, triarylmethane, indigo carmine and anthraquinonic dyes, that could be significantly enhanced in the presence of the redox mediators 1-hydroxybenzotriazole and violuric acid. Conclusion: Heterologous expression of T. trogii laccase lcc1 in the methylotrophic yeast P. pastoris was successfully achieved. The biochemical and kinetic characterization of the recombinant protein suggests potential technological applications for this enzyme.

Journal ArticleDOI
TL;DR: In oxygen‐limited cultivations of recombinant Pichia pastoris, the methanol concentration had a strong impact on the production of a single‐chain antibody fragment (scFv), enabling product concentration as high as otherwise obtained only with expensive supply of pure oxygen.
Abstract: The methylotrophic yeast Pichia pastoris is a powerful system for production of recombinant proteins, showing high ability to secrete properly folded proteins. A major plus is the strong AOX1 promoter highly induced by methanol. During growth on methanol, however, oxygen readily becomes limiting. In oxygen-limited cultivations of recombinant Pichia pastoris, the methanol concentration had a strong impact on the production of a single-chain antibody fragment (scFv). High methanol concentrations were required to compensate the lack of oxygen and fully induce recombinant protein production, at the same time reducing gratuitous biomass formation due to a lower biomass yield. Product concentrations of 60, 150, and 350 mg/L were obtained with methanol concentrations of 0.3, 1, and 3% (v/v). Moreover, accumulation of a putative product fragment that cannot be removed during affinity purification was prevented at high methanol concentrations. Cell vitality after 100 h was maintained above 98% and 96% of the culture with 0.3% and 3% methanol, respectively. In cultivations supplemented with oxygen, in contrast, methanol concentration between 0.3% and 3% did not influence the product yield of 300-400 mg/L. Thus, efficient recombinant protein production under oxygen-limitation seems to require high methanol concentrations, enabling product concentration as high as otherwise obtained only with expensive supply of pure oxygen.

Journal ArticleDOI
TL;DR: The findings from the present study demonstrate the presence of a network of chaperones in vivo, which may act synergistically to increase recombinant protein yields.
Abstract: In Pichia pastoris, secretory proteins are folded and assembled in the endoplasmic reticulum (ER). However, upon introduction of foreign proteins, heterologous proteins are often retained in the cytoplasm or in the ER as a result of suboptimal folding conditions, leading to protein aggregation. The Hsp70 and Hsp40 chaperone families in the cytoplasm or in ER importantly regulate the folding and secretion of heterologous proteins. However, it is not clear which single chaperone is most important or which combination optimally cooperates in this process. In the present study we evaluated the role of the chaperones Kar2p, Sec63, YDJ1p, Ssalp, and PDI from Saccharomyces cerevisiae. We found that the introduction of Kar2p, Ssalp, or PDI improves protein secretion 4-7 times. In addition, we found that the combination chaperones of YDJlp/ PDI, YDJlp/Sec63, and Kar2p/PDI synergistically increase secretion levels 8.7, 7.6, and 6.5 times, respectively. Therefore, additional integration of chaperone genes can improve the secretory expression of the heterologous protein. Western blot experiments revealed that the chaperones partly relieved the secretion bottleneck resulting from foreign protein introduction in P. pastoris. Therefore, the findings from the present study demonstrate the presence of a network of chaperones in vivo, which may act synergistically to increase recombinant protein yields.

Journal ArticleDOI
TL;DR: Results reaffirm that the yeast P. pastoris is a suitable host for high level and correctly folded production of VHH antibody fragments with potential in vivo diagnostic and therapeutic applications.

Journal ArticleDOI
TL;DR: It is the first FEH shown to hydrolyse exclusively beta2-6 bonds found in a fructan-producing plant, and in contrast to most FEHs from fructans-accumulating plants, this FEH is not inhibited by sucrose.
Abstract: Fructans, b2-1 and/or b2-6 linked polymers of fructose, are produced by fructosyltransferases (FTs) from sucrose. They are important storage carbohydrates in many plants. Fructan reserves, widely distributed in plants, are believed to be mobilized via fructan exohydrolases (FEHs). The purification, cloning, and functional characterization of a 6-FEH from wheat (Triticum aestivum L.) are reported here. It is the first FEH shown to hydrolyse exclusively b2-6 bonds found in a fructanproducing plant. The enzyme was purified to homogeneity using ammonium sulphate precipitation, ConA affinity-, ion exchange-, and size exclusion chromatography and yielded a single band of 70 kDa following SDS-PAGE. Sequence information obtained by mass spectrometry of in-gel trypsin digests demonstrated the presence of a single protein. Moreover, these unique peptide sequences, together with some ESTs coding for them, could be used in a RT-PCR based strategy to clone a 1.7 kb cDNA. Functionality tests of the cDNA performed after heterologous expression in the yeast Pichia pastoris showed—as did the native enzyme from wheat—a very high activity of the produced protein against bacterial levan, 6-kestose, and phlein whilst sucrose and inulin were not used as substrates. Therefore the enzyme is a genuine 6-FEH. In contrast to most FEHs from fructan-accumulating plants, this FEH is not inhibited by sucrose. The relative abundance of 6-FEH transcripts in various tissues of wheat was investigated using quantitative RT-PCR.

Journal ArticleDOI
TL;DR: Recombinant APPA had high activity from pH 2 to 6 (optimum 4.5) and optimal temperature of 55 degrees C; the enzyme was resistant to pepsin and trypsin; these characteristics suggest that APPA may be highly suitable for use in the feed industry.

Journal ArticleDOI
TL;DR: The overproduction of PpPDI or PfPDI provides new platforms for expression of disulfide-rich malaria proteins.

Journal ArticleDOI
TL;DR: The identification, cloning, and functional characterization of the cholesterol-α-glucosyltransferase from H. pylori is reported, and it is revealed that the enzyme represents a membrane-bound, UDP- glucose-dependent cholesterol- α-glUCosyl transferase.

Journal ArticleDOI
TL;DR: The gene constructs containing wild type or modified phytase gene coding sequences under the control of the highly-inducible alcohol oxidase gene (AOX1) promoter, the synthetic signal peptide (designated MF4I), which is a codon-modified Saccharomyces cerevisiae mating factor α-prepro-leader sequence, were used to transform P. pastoris.
Abstract: Phytase is widespread in nature. It has been used as a cereal feed additive that can enhance the phosphorus and mineral absorption in monogastric animals to reduce the level of phosphorus output in manure. Phytase of Peniophora lycii is a 6′-phytase, which owns high specific activity. To achieve a high expression level of 6′-phytase in Pichia pastoris, the 1,230-bp phytase gene of P. lycii was synthesized and optimized for codon usage, G+C content, as well as mRNA secondary structures. The gene constructs containing wild type or modified phytase gene coding sequences under the control of the highly-inducible alcohol oxidase gene (AOX1) promoter, the synthetic signal peptide (designated MF4I), which is a codon-modified Saccharomyces cerevisiae mating factor α-prepro-leader sequence, were used to transform P. pastoris. The P. pastoris strain that expressed the modified phytase gene (phy-pl-sh) with MF4I sequence produced 12.2 g phytase per liter of fluid culture, with the phytase activity of 10,540 U ml−1. The yield of the modified phytase gene, with bias codon usage and MF4I signal, is 4.4 times higher than that of the wild type gene with MF4I signal and 13.6 times higher than that of the wild type gene with wild type S. cerevisiae signal. The recombinant phytase had one optimum pH (pH 4.5) and an optimum temperature of 50°C. The P. pastoris strain expressed the modified 6-phytase gene, with the MF4I signal peptide showing great potential as a commercial phytase production system.

Journal ArticleDOI
TL;DR: This protocol is applicable to recombinant protein expression by small-scale fermentation using the Pichia pastoris expression system, which has the capacity to produce large quantities of protein with eukaryotic processing.
Abstract: This protocol is applicable to recombinant protein expression by small-scale fermentation using the Pichia pastoris expression system. P. pastoris has the capacity to produce large quantities of protein with eukaryotic processing. Expression is controlled by a methanol-inducible promoter, which allows a biomass-generation phase before protein production is initiated. The target protein is secreted directly into a protein-free mineral salt medium, and is relatively easy to purify. The protocol is readily interfaced with expanded bed adsorption for immediate capture and purification of recombinant protein. The setting up of the bioreactor plus the fermentation itself takes 1 wk. Making the master and user seed lots takes approximately 2 wk for each individual clone.

Journal ArticleDOI
TL;DR: This finding demonstrates that the regional codon optimization the lip1 gene fragment at the 5' end can greatly increase the expression level of recombinant LIP1 in the P. pastoris system.
Abstract: An important industrial enzyme, Candida rugosa lipase (CRL) possesses several different isoforms encoded by the lip gene family (lip1-lip7), in which the recombinant LIP1 is the major form of the CRL multigene family. Previously, 19 of the nonuniversal serine codons (CTG) of the lip1 gene hav been successfully converted into universal serine codons (TCT) by overlap extension PCR-based multiple-site-directed mutagenesis to express an active recombinant LIP1 in the yeast Pichia pastoris. To improve the expression efficiency of recombinant LIP1 in P. pastoris, a regional synthetic gene fragment of lip1 near the 5' end of a transcript has been constructed to match P. pastoris-preferred codon usage for simple scale-up fermentation. The present results show that the production level (152 mg/L) of coLIP1 (codon-optimized LIP1) has an overall improvement of 4.6-fold relative to that (33 mg/L) of non-codon-optimized LIP1 with only half the cultivation time of P. pastoris. This finding demonstrates that the regional codon optimization the lip1 gene fragment at the 5' end can greatly increase the expression level of recombinant LIP1 in the P. pastoris system. More distinct biochemical properties of the purified recombinant LIP1 for further industrial applications are also determined and discussed in detail.

Journal ArticleDOI
TL;DR: A full-length xylanase gene, encoding 326 amino acids belonging to the fungal glycosyl hydrolase family 10, from Aspergillus terreus BCC129 was cloned and sequenced and showed moderate thermal stability and a potential use in the animal feed and paper and pulp industries.