scispace - formally typeset
Search or ask a question
Topic

Pichia pastoris

About: Pichia pastoris is a research topic. Over the lifetime, 7937 publications have been published within this topic receiving 162645 citations. The topic is also known as: Komagataella pastoris.


Papers
More filters
Journal ArticleDOI
TL;DR: CALB-displaying P. pastoris whole cells are robust biocatalysts with potential commercial application in the large-scale production of flavor esters in non-aqueous media.

57 citations

Journal ArticleDOI
TL;DR: The results show several distinct features of LD from P. pastoris especially in comparison to Saccharomyces cerevisiae, which may be helpful for manipulating cell biological and/or biotechnological processes in this yeast.

57 citations

Journal ArticleDOI
TL;DR: The recombinant AiCTL-9 could bind various PAMPs, including LPS, PGN, mannan and glucan, and also displayed agglutinating activity to fungi P. pastorisGS115, Gram-positive bacteria Bacillussubtilis and Gram-negative bacteria EscherichiacoliTOP10F' as well as V. anguillarum in a Ca(2+) dependent manner.
Abstract: C-type lectins are a superfamily of Ca2+-dependent carbohydrate-recognition proteins which play significant roles as pattern recognition receptors (PRRs) in the innate immunity. In this study, a novel C-type lectin with four dissimilar carbohydrate-recognition domains (CRDs) was identified from Argopecten irradians (designated as AiCTL-9). The full-length cDNA of AiCTL-9 was of 2291 bp with an open reading frame of 1827 bp encoding a polypeptide of 608 amino acids with a signal sequence and four CRDs. The motifs determining carbohydrate binding specificity in each CRD of AiCTL-9 were different, and they were YPT in CRD1, EPD in CRD2, EPN in CRD3 and QPN in CRD4, respectively. All the four CRDs shared the similar potential tertiary structure of a typical double-loop structure with Ca2+-binding site 2 in the long loop region and two conserved disulfide bridges at the bases of the loops. The mRNA transcripts of AiCTL-9 were mainly detected in hepatopancreas as well as gonad, and also marginally detectable in mantle, adductor, gill and hemocytes. Its relative expression level in hemocytes was significantly up-regulated after the challenges of fungi Pichia pastoris GS115 (P < 0.05). Gram-positive bacteria Micrococcus luteus (P < 0.05) and Gram-negative bacteria Vibrio anguillarum (P < 0.01). The recombinant AiCTL-9 (rAiCTL-9) could bind various PAMPs, including LPS, PGN, mannan and glucan, and also displayed agglutinating activity to fungi P. pastoris GS115, Gram-positive bacteria Bacillus subtilis and Gram-negative bacteria Escherichia coli TOP10P as well as V. anguillarum in a Ca2+ dependent manner. Moreover, rAiCTL-9 could initiate the cellular adhesion of hemocytes and enhance their encapsulation in vitro. All these results implied that AiCTL-9 was a novel PRR involved in immune response of scallop against a large number of pathogens by recognizing different PAMPs and enhancing scallop hemocytes encapsulation. (c) 2011 Elsevier Ltd. All rights reserved.

57 citations

Journal ArticleDOI
TL;DR: The identification of ATG28 suggests that pexophagy may involve species-specific components, since this gene appears to have only weak homologues in other yeasts, and it is known that the micro, macropexophagy, and general autophagy machineries are distinct but share some molecular components.
Abstract: In methylotrophic yeasts, peroxisomes are required for methanol utilization, but are dispensable for growth on most other carbon sources. Upon adaptation of cells grown on methanol to glucose or ethanol, redundant peroxisomes are selectively and quickly shipped to, and degraded in, vacuoles via a process termed pexophagy. We identified a novel gene named ATG28 (autophagy-related genes) involved in pexophagy in the yeast Pichia pastoris. This yeast exhibits two morphologically distinct pexophagy pathways, micro- and macropexophagy, induced by glucose or ethanol, respectively. Deficiency in ATG28 impairs both pexophagic mechanisms but not general (bulk turnover) autophagy, a degradation pathway in yeast triggered by nitrogen starvation. It is known that the micro-, macropexophagy, and general autophagy machineries are distinct but share some molecular components. The identification of ATG28 suggests that pexophagy may involve species-specific components, since this gene appears to have only weak homologues in other yeasts.

57 citations

Journal ArticleDOI
TL;DR: A recombinant gene XylB encoding endo-1,4-β-xylanase, obtained from Aspergillus niger BCC14405, was successfully cloned and secreted as a 21 kDa in Pichia pastoris under the control of AOX1 promoter and produced and used effectively as a feed additive for animals.

57 citations


Network Information
Related Topics (5)
Plasmid
44.3K papers, 1.9M citations
85% related
Saccharomyces cerevisiae
32.1K papers, 1.6M citations
83% related
Escherichia coli
59K papers, 2M citations
83% related
Peptide sequence
84.1K papers, 4.3M citations
82% related
Complementary DNA
55.3K papers, 2.7M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023150
2022340
2021255
2020303
2019374
2018401