scispace - formally typeset
Search or ask a question
Topic

Pichia pastoris

About: Pichia pastoris is a research topic. Over the lifetime, 7937 publications have been published within this topic receiving 162645 citations. The topic is also known as: Komagataella pastoris.


Papers
More filters
Journal ArticleDOI
TL;DR: The purpose of this review is to summarize important developments and features of this expression system and to examine from an experimental perspective the genetic engineering, protein chemical and molecular design considerations that have to be taken into account for the successful expression of the target recombinant protein.
Abstract: The use of the methylotrophic yeast, Pichia pastoris, as a cellular host for the expression of recombinant proteins has become increasing popular in recent times. P. pastoris is easier to genetically manipulate and culture than mammalian cells and can be grown to high cell densities. Equally important, P. pastoris is also a eukaryote, and thereby provides the potential for producing soluble, correctly folded recombinant proteins that have undergone all the post-translational modifications required for functionality. Additionally, linearized foreign DNA can be inserted in high efficiency via homologous recombination procedures to generate stable cell lines whilst expression vectors can be readily prepared that allow multiple copies of the target protein, multimeric proteins with different subunit structures, or alternatively the target protein and its cognate binding partners, to be expressed. A further benefit of the P. pastoris system is that strong promoters are available to drive the expression of a foreign gene(s) of interest, thus enabling production of large amounts of the target protein(s) with relative technical ease and at a lower cost than most other eukaryotic systems. The purpose of this review is to summarize important developments and features of this expression system and, in particular, to examine from an experimental perspective the genetic engineering, protein chemical and molecular design considerations that have to be taken into account for the successful expression of the target recombinant protein. Included in these considerations are the influences of P. pastoris strain selection; the choice of expression vectors and promoters; procedures for the transformation and integration of the vectors into the P. pastoris genome; the consequences of rare codon usage and truncated transcripts; and techniques employed to achieve multi-copy integration numbers. The impact of the alcohol oxidase (AOX) pathways in terms of the mut+ and muts phenotypes, intracellular expression and folding pathways is examined. The roles of pre–pro signal sequences such as the alpha mating factor (α-MF) and the Glu–Ala repeats at the kex2p cleavage site on the processing of the protein translate(s) have also been considered. Protocols for the generation of protein variants and mutants for screening for orphan cognate binding partners and the use of experimental platforms addressing the molecular recognition behaviour of recombinant proteins such as the extracellular domains of transmembrane receptors with their physiological ligands are also described. Finally, the palindromic patterns of glycosylation that can occur with these expression systems, in terms of the role and location of the sequon in the primary structure, the number of mannose units and the types of oligosaccharides incorporated as Asn- or O-linkages and their impact on the thermostability and immunogenicity of the recombinant protein are considered. Procedures to prevent glycosylation through manipulation of cell culture conditions or via enzymatic and site-directed mutagenesis methods are also discussed. Copyright © 2004 John Wiley & Sons, Ltd.

804 citations

Journal ArticleDOI
TL;DR: This review refers to established tools in protein expression in P. pastoris and highlights novel developments in the areas of expression vector design, host strain engineering and screening for high-level expression strains.
Abstract: Pichia pastoris is an established protein expression host mainly applied for the production of biopharmaceuticals and industrial enzymes. This methylotrophic yeast is a distinguished production system for its growth to very high cell densities, for the available strong and tightly regulated promoters, and for the options to produce gram amounts of recombinant protein per litre of culture both intracellularly and in secretory fashion. However, not every protein of interest is produced in or secreted by P. pastoris to such high titres. Frequently, protein yields are clearly lower, particularly if complex proteins are expressed that are hetero-oligomers, membrane-attached or prone to proteolytic degradation. The last few years have been particularly fruitful because of numerous activities in improving the expression of such complex proteins with a focus on either protein engineering or on engineering the protein expression host P. pastoris. This review refers to established tools in protein expression in P. pastoris and highlights novel developments in the areas of expression vector design, host strain engineering and screening for high-level expression strains. Breakthroughs in membrane protein expression are discussed alongside numerous commercial applications of P. pastoris derived proteins.

749 citations

Journal ArticleDOI
TL;DR: The Pichia pastoris expression system offers economy, ease of manipulation, the ability to perform complex post-translational modifications, and high expression levels.

603 citations

Journal ArticleDOI
TL;DR: A methylotrophic yeast, Pichia pastoris, is developed as a host for DNA transformations based on an auxotrophic mutant host of P. pastoris which is defective in histidinol dehydrogenase.
Abstract: We developed a methylotrophic yeast, Pichia pastoris, as a host for DNA transformations. The system is based on an auxotrophic mutant host of P. pastoris which is defective in histidinol dehydrogenase. As a selectable marker, we isolated and characterized the P. pastoris HIS4 gene. Plasmid vectors which contained either the P. pastoris or the Saccharomyces cerevisiae HIS4 gene transformed the P. pastoris mutant host. DNA transfer was accomplished by a modified version of the spheroplast generation (CaCl2-polyethylene glycol)-fusion procedure developed for S. cerevisiae. In addition, we report the isolation and characterization of P. pastoris DNA fragments with autonomous replication sequence activity. Two fragments, PARS1 and PARS2, when present on plasmids increased transformation frequencies to 10(5)/micrograms and maintained the plasmids as autonomous elements in P. pastoris cells.

569 citations

Journal ArticleDOI
TL;DR: It is demonstrated that human antibodies with specific human N-glycan structures can be produced in glycoengineered lines of the yeast Pichia pastoris and that antibody-mediated effector functions can be optimized by generating specific glycoforms.
Abstract: As the fastest growing class of therapeutic proteins, monoclonal antibodies (mAbs) represent a major potential drug class Human antibodies are glycosylated in their native state and all clinically approved mAbs are produced by mammalian cell lines, which secrete mAbs with glycosylation structures that are similar, but not identical, to their human counterparts Glycosylation of mAbs influences their interaction with immune effector cells that kill antibody-targeted cells Here we demonstrate that human antibodies with specific human N-glycan structures can be produced in glycoengineered lines of the yeast Pichia pastoris and that antibody-mediated effector functions can be optimized by generating specific glycoforms Glycoengineered P pastoris provides a general platform for producing recombinant antibodies with human N-glycosylation

515 citations


Network Information
Related Topics (5)
Plasmid
44.3K papers, 1.9M citations
85% related
Saccharomyces cerevisiae
32.1K papers, 1.6M citations
83% related
Escherichia coli
59K papers, 2M citations
83% related
Peptide sequence
84.1K papers, 4.3M citations
82% related
Complementary DNA
55.3K papers, 2.7M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023150
2022340
2021255
2020303
2019374
2018401