scispace - formally typeset
Search or ask a question
Topic

Pichia pastoris

About: Pichia pastoris is a research topic. Over the lifetime, 7937 publications have been published within this topic receiving 162645 citations. The topic is also known as: Komagataella pastoris.


Papers
More filters
Journal ArticleDOI
TL;DR: Optimize G+C content, regardless of corresponding codon optimization, appears to be the major contributor to increased translational efficiency in this heterologous expression host.

178 citations

Journal ArticleDOI
TL;DR: A recently developed methodology to determine strain specific parameters based on dynamic batch cultivations proved to be a valuable tool for fast strain characterization and thus early process development.
Abstract: The methylotrophic yeast Pichia pastoris has become an important host organism for recombinant protein production and is able to use methanol as a sole carbon source. The methanol utilization pathway describes all the catalytic reactions, which happen during methanol metabolism. Despite the importance of certain key enzymes in this pathway, so far very little is known about possible effects of overexpressing either of these key enzymes on the overall energetic behavior, the productivity and the substrate uptake rate in P. pastoris strains. A fast and easy-to-do approach based on batch cultivations with methanol pulses was used to characterize different P. pastoris strains. A strain with MutS phenotype was found to be superior over a strain with Mut+ phenotype in both the volumetric productivity and the efficiency in expressing recombinant horseradish peroxidase C1A. Consequently, either of the enzymes dihydroxyacetone synthase, transketolase or formaldehyde dehydrogenase, which play key roles in the methanol utilization pathway, was co-overexpressed in MutS strains harboring either of the reporter enzymes horseradish peroxidase or Candida antarctica lipase B. Although the co-overexpression of these enzymes did not change the stoichiometric yields of the recombinant MutS strains, significant changes in the specific growth rate, the specific substrate uptake rate and the specific productivity were observed. Co-overexpression of dihydroxyacetone synthase yielded a 2- to 3-fold more efficient conversion of the substrate methanol into product, but also resulted in a reduced volumetric productivity. Co-overexpression of formaldehyde dehydrogenase resulted in a 2-fold more efficient conversion of the substrate into product and at least similar volumetric productivities compared to strains without an engineered methanol utilization pathway, and thus turned out to be a valuable strategy to improve recombinant protein production. Co-overexpressing enzymes of the methanol utilization pathway significantly affected the specific growth rate, the methanol uptake and the specific productivity of recombinant P. pastoris MutS strains. A recently developed methodology to determine strain specific parameters based on dynamic batch cultivations proved to be a valuable tool for fast strain characterization and thus early process development.

177 citations

Journal ArticleDOI
15 Jun 1998-Yeast
TL;DR: A set of compact vectors that should allow for the expression of a wide range of endogenous or foreign genes in P. pastoris are described.
Abstract: The budding yeast Pichia pastoris is an attractive system for exploring certain questions in cell biology, but experimental use of this organism has been limited by a lack of convenient expression vectors. Here we describe a set of compact vectors that should allow for the expression of a wide range of endogenous or foreign genes in P. pastoris. A gene of interest is inserted into a modified pUC19 polylinker; targeted integration into the genome then results in stable and uniform expression of this gene. The utility of these vectors was illustrated by expressing the bacterial beta-glucuronidase (GUS) gene. Constitutive GUS expression was obtained with the strong GAP promoter or the moderate YPT1 promoter. The regulatable AOX1 promoter yielded very strong GUS expression in methanol-grown cells, negligible expression in glucose-grown cells, and intermediate expression in mannitol-grown cells. GenBank Accession Numbers are: pIB1, AF027958; pIB2, AF0279959; pIB3, AF027960; pIB4, AF027961.

177 citations

Journal ArticleDOI
TL;DR: The BcSpl1-treated plant tissues showed symptoms of the hypersensitive response such as induction of reactive oxygen species, electrolyte leakage, cytoplasm shrinkage, and cell autofluorescence, as well as the induction of defense genes considered to be markers ofThe hyperssensitive response.
Abstract: Proteins belonging to the cerato-platanin family are small proteins with phytotoxic activity. A member of this family, BcSpl1, is one of the most abundant proteins in the Botrytis cinerea secretome. Expression analysis of the bcspl1 gene revealed that the transcript is present in every condition studied, showing the highest level in planta at the late stages of infection. Expression of a second cerato-platanin gene found in the B. cinerea genome, bcspl2, was not detected in any condition. Two bcspl1 knock-out mutants were generated and both showed reduced virulence in a variety of hosts. • bcspl1 was expressed in Pichia pastoris and the recombinant protein was able to cause a fast and strong necrosis when infiltrated in tomato, tobacco and Arabidopsis leaves, in a dose-dependent manner. The BcSpl1-treated plant tissues showed symptoms of the hypersensitive response such as induction of reactive oxygen species, electrolyte leakage, cytoplasm shrinkage, and cell autofluorescence, as well as the induction of defense genes considered to be markers of the hypersensitive response. The Arabidopsis bak1 mutation partially prevented the induction of necrosis in this plant by BcSpl1. Two different BcSpl1-derived 40-amino acids peptides were also active in inducing necrosis.

176 citations

Journal ArticleDOI
TL;DR: In this article, the authors demonstrate label-free detection of individual proteins from Escherichia coli (bacteria) and Pichia pastoris (yeast) in a microfluidic chamber, measuring protein efflux from single organisms in real time.
Abstract: A distinct advantage of nanosensor arrays is their ability to achieve ultralow detection limits in solution by proximity placement to an analyte. Here, we demonstrate label-free detection of individual proteins from Escherichia coli (bacteria) and Pichia pastoris (yeast) immobilized in a microfluidic chamber, measuring protein efflux from single organisms in real time. The array is fabricated using non-covalent conjugation of an aptamer-anchor polynucleotide sequence to near-infrared emissive single-walled carbon nanotubes, using a variable chemical spacer shown to optimize sensor response. Unlabelled RAP1 GTPase and HIV integrase proteins were selectively detected from various cell lines, via large near-infrared fluorescent turn-on responses. We show that the process of E. coli induction, protein synthesis and protein export is highly stochastic, yielding variability in protein secretion, with E. coli cells undergoing division under starved conditions producing 66% fewer secreted protein products than their non-dividing counterparts. We further demonstrate the detection of a unique protein product resulting from T7 bacteriophage infection of E. coli, illustrating that nanosensor arrays can enable real-time, single-cell analysis of a broad range of protein products from various cell types.

176 citations


Network Information
Related Topics (5)
Plasmid
44.3K papers, 1.9M citations
85% related
Saccharomyces cerevisiae
32.1K papers, 1.6M citations
83% related
Escherichia coli
59K papers, 2M citations
83% related
Peptide sequence
84.1K papers, 4.3M citations
82% related
Complementary DNA
55.3K papers, 2.7M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023150
2022340
2021255
2020303
2019374
2018401