scispace - formally typeset
Search or ask a question
Topic

Pichia pastoris

About: Pichia pastoris is a research topic. Over the lifetime, 7937 publications have been published within this topic receiving 162645 citations. The topic is also known as: Komagataella pastoris.


Papers
More filters
Journal ArticleDOI
TL;DR: Two synthetic genes that code for the F2 domain located within region II of the 175-kDa Plasmodium falciparum erythrocyte binding antigen (EBA-175) were produced to determine the effects of codon alteration on protein expression in homologous and heterologous host systems.
Abstract: We have produced two synthetic genes that code for the F2 domain located within region II of the 175-kDa Plasmodium falciparum erythrocyte binding antigen (EBA-175) to determine the effects of codon alteration on protein expression in homologous and heterologous host systems. EBA-175 plays a key role in the process of merozoite invasion into erythrocytes through a specific receptor-ligand interaction. The F2 domain of EBA-175 is the ligand that binds to the glycophorin A receptor on human erythrocytes and is therefore a target of vaccine development efforts. We designed synthetic genes based on P. falciparum, Escherichia coli, and Pichia codon usage and expressed recombinant F2 in E. coli and Pichia pastoris. Compared to the expression of the native F2 sequence, conversion to prokaryote (E. coli)- or eukaryote (Pichia)-based codon usage dramatically improved the levels of recombinant protein expression in both E. coli and P. pastoris. The majority of the protein expressed in E. coli, however, was produced as inclusion bodies. The protein expressed in P. pastoris, on the other hand, was expressed as a secreted, soluble protein. The P. pastoris-produced protein was superior to that produced in E. coli based on its ability to bind to red blood cells. Consistent with these observations, the antibodies generated against the Pichia-produced protein prevented the binding of recombinant EBA to red blood cells. These antibodies recognize EBA-175 present on merozoites as well as in sporozoites by immunofluorescence. Our results suggest that the Pichia-based EBA-F2 vaccine construct has further potential to be developed for clinical use.

139 citations

Journal ArticleDOI
TL;DR: The MePNet (Membrane Protein Network) was established to overexpress a large number of GPCRs in three major expression systems, based on Escherichia coli, Pichia pastoris and Semliki Forest virus vectors, and functional activity was determined by binding assays in yeast and mammalian cells.
Abstract: Production of recombinant receptors has been one of the major bottlenecks in structural biology on G protein-coupled receptors (GPCRs). The MePNet (Membrane Protein Network) was established to overexpress a large number of GPCRs in three major expression systems, based on Escherichia coli, Pichia pastoris and Semliki Forest virus (SFV) vectors. Evaluation by immunodetection demonstrated that 50% of a total of 103 GPCRs were expressed in bacterial inclusion bodies, 94% in yeast cell membranes and 95% in SFV-infected mammalian cells. The expression levels varied from low to high and the various GPCR families and subtypes were analyzed for their expressability in each expression system. More than 60% of the GPCRs were expressed at milligram levels or higher in one or several systems, compatible to structural biology applications. Functional activity was determined by binding assays in yeast and mammalian cells and the correlation between immunodetection and binding activity was analyzed.

137 citations

Journal ArticleDOI
TL;DR: It is concluded that the ability of endostatin to bind Zn2+ is essential for its antiangiogenic activity.

137 citations

Journal ArticleDOI
TL;DR: It is shown that during PDI cooverexpression with the single-chain there is a sixfold increase in BiP levels, indicating that the former is possibly inducing an unfolded protein response due to excess chaperone and recombinant protein in the ER.
Abstract: In Pichia pastoris, secretion of the A33 single-chain antibody fragment (A33scFv) was shown to reach levels of approximately 4 g l−1 in fermentor cultures. In this study, we investigated whether manipulating chaperone and foldase levels in P. pastoris could further increase secretion of A33scFv. Cells were engineered to cooverexpress immunoglobulin binding protein (BiP) and/or protein disulfide isomerase (PDI) with A33scFv during growth in methanol as the sole carbon and energy source. Cooverexpression of BiP resulted in increased secretion levels of A33scFv by approximately threefold. In contrast, cooverexpression of PDI had no apparent effect on secretion of A33scFv. In cells cooverexpressing BiP and PDI, A33scFv secretion did not increase and protein levels remained the same as the control strain. We believe that secretion of A33scFv is increased by cooverexpression of BiP as a result of an increase in folding capacity inside the endoplasmic reticulum (ER). In addition, lack of increased single-chain secretion when PDI is coexpressed was unexpected due to the presence of disulfide bonds in A33scFv. We also show that during PDI cooverexpression with the single-chain there is a sixfold increase in BiP levels, indicating that the former is possibly inducing an unfolded protein response due to excess chaperone and recombinant protein in the ER.

137 citations

PatentDOI
TL;DR: In this paper, the LIP1 gene was completely synthesised with an optimised nucleotide sequence in terms of heterologous expression in yeast and simplified genetic manipulation, and the recombinant CRL was produced at high level and purity, accounting for 90-95 % of the secreted proteins.
Abstract: The dimorphic yeast Candida rugosa has an unusual codon-usage which hampers the functional expression of genes derived from this yeast in a conventional heterologous host. Lipases produced by this yeast are extensively used in industrial bioconversions, but commercial lipase samples contain several different isoforms encoded by the LIP genes family. In a first laborious attempt the LIP1 gene, encoding the major isoform of the C. rugosa lipases (CRLs), was systematically modified by site-directed mutagenesis to gain functional expression in S. cerevisiae. As alternative approach, the gene (1688 bp) was completely synthesised with an optimised nucleotide sequence in terms of heterologous expression in yeast and simplified genetic manipulation. The synthetic gene was functionally overexpressed in Pichia pastoris. The recombinant CRL was produced at high level and purity, accounting for 90-95 % of the secreted proteins. The physical-chemical and catalytic properties of the recombinant lipase were compared with those of a commercial, non-recombinant C. rugosa lipase preparation.

136 citations


Network Information
Related Topics (5)
Plasmid
44.3K papers, 1.9M citations
85% related
Saccharomyces cerevisiae
32.1K papers, 1.6M citations
83% related
Escherichia coli
59K papers, 2M citations
83% related
Peptide sequence
84.1K papers, 4.3M citations
82% related
Complementary DNA
55.3K papers, 2.7M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023150
2022340
2021255
2020303
2019374
2018401