scispace - formally typeset
Search or ask a question
Topic

PID controller

About: PID controller is a research topic. Over the lifetime, 56953 publications have been published within this topic receiving 527047 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The results show that the tracking control performance is greatly improved by augmenting the feedback loop with a model of hysteresis in the feedforward loop.
Abstract: The tracking control accuracy of piezoceramic actuators is limited due to their inherent hysteresis nonlinearity. This paper presents a computer-based tracking control approach for a piezoceramic actuator based on incorporating a feedforward loop with a PID (proportional-integral-derivative) feedback controller. The hysteresis nonlinearity of the piezoceramic actuator is modeled in the feedforward loop by using the classical Preisach model. Experiments were performed on a stacked piezoceramic actuator for tracking sinusoidal waveforms with signal frequencies ranging from 0.1-20 Hz. A comparison was made between a feedforward control scheme, a regular PID feedback control scheme, and a PID feedback control scheme with hysteresis modeling in the feedforward loop. The results show that the tracking control performance is greatly improved by augmenting the feedback loop with a model of hysteresis in the feedforward loop. The maximum error in tracking a sinusoidal waveform is about half that obtained using a regular PID controller.

681 citations

Journal ArticleDOI
01 May 1993
TL;DR: In this article, the analytical procedures for obtaining optimum PID controller settings for minimisation of time weighted integral performance criteria are reviewed and two procedures for finding the required controller parameters for optimisation of the integral of time error squared criterion are presented.
Abstract: The paper first briefly reviews the analytical procedures for obtaining optimum PID controller settings for minimisation of time weighted integral performance criteria. The approach is then used to obtain formulae for setting the controller parameters for a first-order plus dead time plant model which is a common approximation used in the process industries. These results are further extended to obtain two procedures, which can be used with the relay autotuning approach, to find the required controller parameters for optimisation of the integral of time error squared criterion. Good results have been obtained when these criteria are used with other plant models.

662 citations

Journal ArticleDOI
TL;DR: In this article, a hybrid system consisting of a proportional integral (PI) controller plus a generic hth harmonic resonant controller implemented in a frame rotating at the n th harmonic frequency is discussed in detail.
Abstract: Voltage source inverters connected to the grid in applications such as active rectifiers, active filters, uninterruptible power supplies, and distributed generation systems need an optimal ac current control. To obtain zero steady-state error at the fundamental frequency (i.e., unity power factor), the use of a standard integrator in a rotating frame is as effective as the use of a resonant controller in a stationary frame. However, the grid voltage harmonics influence the current controller and generate current harmonics unless several integrators in multiple rotating frames or resonant compensators in a stationary frame are adopted. In this letter, a hybrid system consisting of a proportional integral (PI) controller plus a generic hth harmonic resonant controller implemented in a frame rotating at the n th harmonic frequency is discussed in detail. The hth harmonic controller is able to decrease both the (h - n)th and (h + n)th harmonics, while the PI controller is able to decrease other harmonics if the synchronization phase signal adopted for the frame transformation is unfiltered. It is demonstrated that the use of a PI and sixth harmonic resonant compensator is effective for both positive and negative sequence fifth and seventh harmonics; hence, four harmonics are compensated with the proportional integral-resonant (PI-RES) controller implemented in a synchronous frame. Simulation and experimental tests validate the proposed analysis

662 citations

Journal ArticleDOI
TL;DR: Model-free control and the corresponding ‘intelligent’ PID controllers (iPIDs), which already had many successful concrete applications, are presented here for the first time in an unified manner, where the new advances are taken into account.
Abstract: ''Model-free control'' and the corresponding ''intelligent'' PID controllers (iPIDs), which already had many successful concrete applications, are presented here for the first time in an unified manner, where the new advances are taken into account. The basics of model-free control is now employing some old functional analysis and some elementary differential algebra. The estimation techniques become quite straightforward via a recent online parameter identification approach. The importance of iPIs and especially of iPs is deduced from the presence of friction. The strange industrial ubiquity of classic PID's and the great difficulty for tuning them in complex situations is deduced, via an elementary sampling, from their connections with iPIDs. Several numerical simulations are presented which include some infinite-dimensional systems. They demonstrate not only the power of our intelligent controllers but also the great simplicity for tuning them.

645 citations


Network Information
Related Topics (5)
Control theory
299.6K papers, 3.1M citations
96% related
Fuzzy logic
151.2K papers, 2.3M citations
89% related
Robustness (computer science)
94.7K papers, 1.6M citations
88% related
Artificial neural network
207K papers, 4.5M citations
85% related
Electric power system
133K papers, 1.7M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20242
20231,693
20223,813
20212,591
20203,355
20193,689