scispace - formally typeset
Search or ask a question
Topic

Piecewise

About: Piecewise is a research topic. Over the lifetime, 21064 publications have been published within this topic receiving 432096 citations. The topic is also known as: piecewise-defined function & hybrid function.


Papers
More filters
Journal ArticleDOI
TL;DR: A new family of finite element methods for the Naghdi shell model, one method associated with each nonnegative integer k, based on a nonstandard mixed formulation, and the kth method employs triangular Lagrange finite elements of degree k+2 augmented by bubble functions ofdegree k + 3 for both the displacement and rotation variables.
Abstract: We propose a new family of finite element methods for the Naghdi shell model, one method associated with each nonnegative integer k. The methods are based on a nonstandard mixed formulation, and the kth method employs triangular Lagrange finite elements of degree k+2 augmented by bubble functions of degree k + 3 for both the displacement and rotation variables, and discontinuous piecewise polynomials of degree k for the shear and membrane stresses. This method can be implemented in terms of the displacement and rotation variables alone; as the minimization of an altered energy functional over the space mentioned. The alteration consists of the introduction of a weighted local projection into part, but not all, of the shear and membrane energy terms of the usual Naghdi energy. The relative error in the method, measured in a norm which combines the H I norm of the displacement and ro tation fields and an appropriate norm of the shear and membrane stress fields, converges to zero with order k+1 uniformly with respect to the shell thickness for smooth solutions, at least under the assumption that certain geometrical coefficients in the Nagdhi model are replaced by piecewise constants.

83 citations

Journal ArticleDOI
S. M. Rohde1, K. P. Oh1
TL;DR: In this article, a unified mathematical treatment of thick and thin film elastohydrodynamic lubrication problems is presented, where the construction of approximate solutions is discussed by using Ritz-Galerkin methods with piecewise polynomial basis functions.
Abstract: A unified mathematical treatment of thick and thin film elastohydrodynamic lubrication problems is presented. The construction of approximate solutions is discussed by using Ritz-Galerkin methods with piecewise polynomial basis functions. In particular for the line contact problem, smooth Hermite and cubic spline spaces are used to obtain solutions over a wide load-speed range. Pressure ‘spikes’ are obtained.

83 citations

Journal ArticleDOI
TL;DR: In this article, the technique of neighbor-optimal control is extended to handle cases of parameter change in the system dynamic model, which is used to develop an algorithm for optimizing horizontal aircraft trajectories in general wind fields using time-varying linear feedback gains.
Abstract: The technique of Neighboring Optimal Control is extended to handle cases of parameter change in the system dynamic model. This extension is used to develop an algorithm for optimizing horizontal aircraft trajectories in general wind fields using time-varying linear feedback gains. The minimum-time problem for an airplane traveling horizontally between two points in a variable wind field (a type of Zermelo Problem) is used to illustrate how perturbations in system parameters can be accounted for by augmenting the dynamic model with additional bias states. For the special case of a constant wind shear in the cross-track direction, analytical and numerical results are derived for bias perturbations. Numerical simulations are presented to demonstrate the performance of the proposed state-augmentation technique. An additional example is used to demonstrate an algorithm to compute near-optimal trajectories in general wind fields. The algorithm is based on nondimensionalizing the neighboring optimal control solutions and using piecewise linearly varying wind and horizontal wind shear parameters. One proposed application of this technique is to the computation and real-time update of time-optimal trajectories in wind fields by onboard flight management systems and by ground-based air traffic management automation tools.

83 citations

Journal ArticleDOI
TL;DR: In this paper, the authors propose a generic and flexible methodology for non-parametric function estimation, in which they first estimate the number and locations of any features that may be present in the function and then estimate the function parametrically between each pair of neighbouring detected features.
Abstract: We propose a new, generic and flexible methodology for non-parametric function estimation, in which we first estimate the number and locations of any features that may be present in the function and then estimate the function parametrically between each pair of neighbouring detected features. Examples of features handled by our methodology include change points in the piecewise constant signal model, kinks in the piecewise linear signal model and other similar irregularities, which we also refer to as generalized change points. Our methodology works with only minor modifications across a range of generalized change point scenarios, and we achieve such a high degree of generality by proposing and using a new multiple generalized change point detection device, termed narrowest-over-threshold (NOT) detection. The key ingredient of the NOT method is its focus on the smallest local sections of the data on which the existence of a feature is suspected. For selected scenarios, we show the consistency and near optimality of the NOT algorithm in detecting the number and locations of generalized change points. The NOT estimators are easy to implement and rapid to compute. Importantly, the NOT approach is easy to extend by the user to tailor to their own needs. Our methodology is implemented in the R package not.

83 citations

Journal ArticleDOI
TL;DR: By the simultaneous consideration of color matches and spatial constraints in the voting space, this work performs image intensity compensation and high contrast image correction using the robust 2D tensor voting framework, when only two defective input images are given.
Abstract: This work presents a voting method to perform image correction by global and local intensity alignment. The key to our modeless approach is the estimation of global and local replacement functions by reducing the complex estimation problem to the robust 2D tensor voting in the corresponding voting spaces. No complicated model for replacement function (curve) is assumed. Subject to the monotonic constraint only, we vote for an optimal replacement function by propagating the curve smoothness constraint using a dense tensor field. Our method effectively infers missing curve segments and rejects image outliers. Applications using our tensor voting approach are proposed and described. The first application consists of image mosaicking of static scenes, where the voted replacement functions are used in our iterative registration algorithm for computing the best warping matrix. In the presence of occlusion, our replacement function can be employed to construct a visually acceptable mosaic by detecting occlusion which has large and piecewise constant color. Furthermore, by the simultaneous consideration of color matches and spatial constraints in the voting space, we perform image intensity compensation and high contrast image correction using our voting framework, when only two defective input images are given.

83 citations


Network Information
Related Topics (5)
Nonlinear system
208.1K papers, 4M citations
93% related
Partial differential equation
70.8K papers, 1.6M citations
92% related
Bounded function
77.2K papers, 1.3M citations
91% related
Differential equation
88K papers, 2M citations
91% related
Linear system
59.5K papers, 1.4M citations
91% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20251
2023917
20222,014
20211,089
20201,147
20191,106