scispace - formally typeset
Search or ask a question
Topic

PIEZO1

About: PIEZO1 is a research topic. Over the lifetime, 240 publications have been published within this topic receiving 10014 citations. The topic is also known as: DHS & FAM38A.


Papers
More filters
Journal ArticleDOI
01 Oct 2010-Science
TL;DR: Two genes that encode proteins, Piezo1 and Piezo2, are identified, which are required for mechanically stimulated cation conductance in these cells and in cultured dorsal root ganglion neurons, and it is proposed that Piezos are components of MA cation channels.
Abstract: Mechanical stimuli drive many physiological processes, including touch and pain sensation, hearing, and blood pressure regulation. Mechanically activated (MA) cation channel activities have been recorded in many cells, but the responsible molecules have not been identified. We characterized a rapidly adapting MA current in a mouse neuroblastoma cell line. Expression profiling and RNA interference knockdown of candidate genes identified Piezo1 (Fam38A) to be required for MA currents in these cells. Piezo1 and related Piezo2 (Fam38B) are vertebrate multipass transmembrane proteins with homologs in invertebrates, plants, and protozoa. Overexpression of mouse Piezo1 or Piezo2 induced two kinetically distinct MA currents. Piezos are expressed in several tissues, and knockdown of Piezo2 in dorsal root ganglia neurons specifically reduced rapidly adapting MA currents. We propose that Piezos are components of MA cation channels.

1,928 citations

Journal ArticleDOI
08 Mar 2012-Nature
TL;DR: It is shown that Drosophila melanogaster Piezo (DmPiezo, also called CG8486) also induces mechanically activated currents in cells, but through channels with remarkably distinct pore properties including sensitivity to the pore blocker ruthenium red and single channel conductances, demonstrating that Piezo proteins are an evolutionarily conserved ion channel family involved in mechanotransduction.
Abstract: Mechanotransduction has an important role in physiology. Biological processes including sensing touch and sound waves require as-yet-unidentified cation channels that detect pressure. Mouse Piezo1 (MmPiezo1) and MmPiezo2 (also called Fam38a and Fam38b, respectively) induce mechanically activated cationic currents in cells; however, it is unknown whether Piezo proteins are pore-forming ion channels or modulate ion channels. Here we show that Drosophila melanogaster Piezo (DmPiezo, also called CG8486) also induces mechanically activated currents in cells, but through channels with remarkably distinct pore properties including sensitivity to the pore blocker ruthenium red and single channel conductances. MmPiezo1 assembles as a ∼1.2-million-dalton homo-oligomer, with no evidence of other proteins in this complex. Purified MmPiezo1 reconstituted into asymmetric lipid bilayers and liposomes forms ruthenium-red-sensitive ion channels. These data demonstrate that Piezo proteins are an evolutionarily conserved ion channel family involved in mechanotransduction. Large transmembrane proteins of the Piezo family assemble as tetramers to form a new class of ion channel that can be activated by mechanical force. Many tissues are able to detect and respond to mechanical forces, and this mechanical sensitivity has been implicated in many biological processes and diseases, including touch, pain, deafness and hypertension. The conversion of mechanical force into biological signals, or 'mechanotransduction', is thought to involve specialized cation channels. In a pair of papers, Ardem Patapoutian and colleagues establish that the large transmembrane proteins of the 'Piezo' family — conserved from animals to plants and protozoa — are among the long-sought-after mechanically activated ion channels. Coste et al. show that the Drosophila melanogaster Piezo protein induces mechanically activated cationic currents in human embryonic kidney cells, establishing functional conservation. Comparison of the mechanically activated currents induced by mouse and fly Piezos reveals ion-channel activities with unique pore properties, suggesting that Piezos are bona fide ion channels. Kim et al. show that D. melanogaster Piezo is essential for sensing mechanical pain in fruitflies, giving the first demonstration that Piezos are physiologically relevant mechanosensors in vivo.

765 citations

Journal ArticleDOI
13 Nov 2014-Nature
TL;DR: Piezo1 channels are shown as sensors of frictional force (shear stress) and determinants of vascular structure in both development and adult physiology and the data suggest that Piezo 1 channels function as pivotal integrators in vascular biology.
Abstract: The mechanisms by which physical forces regulate endothelial cells to determine the complexities of vascular structure and function are enigmatic. Studies of sensory neurons have suggested Piezo proteins as subunits of Ca(2+)-permeable non-selective cationic channels for detection of noxious mechanical impact. Here we show Piezo1 (Fam38a) channels as sensors of frictional force (shear stress) and determinants of vascular structure in both development and adult physiology. Global or endothelial-specific disruption of mouse Piezo1 profoundly disturbed the developing vasculature and was embryonic lethal within days of the heart beating. Haploinsufficiency was not lethal but endothelial abnormality was detected in mature vessels. The importance of Piezo1 channels as sensors of blood flow was shown by Piezo1 dependence of shear-stress-evoked ionic current and calcium influx in endothelial cells and the ability of exogenous Piezo1 to confer sensitivity to shear stress on otherwise resistant cells. Downstream of this calcium influx there was protease activation and spatial reorganization of endothelial cells to the polarity of the applied force. The data suggest that Piezo1 channels function as pivotal integrators in vascular biology.

710 citations

Journal ArticleDOI
TL;DR: It is demonstrated that Piezo1 is activated by shear stress, the major type of mechanical force experienced by endothelial cells in response to blood flow, which suggests a potential role forPiezo1 in mechanotransduction in adult cardiovascular function and disease.
Abstract: Mechanosensation is perhaps the last sensory modality not understood at the molecular level. Ion channels that sense mechanical force are postulated to play critical roles in a variety of biological processes including sensing touch/pain (somatosensation), sound (hearing), and shear stress (cardiovascular physiology); however, the identity of these ion channels has remained elusive. We previously identified Piezo1 and Piezo2 as mechanically activated cation channels that are expressed in many mechanosensitive cell types. Here, we show that Piezo1 is expressed in endothelial cells of developing blood vessels in mice. Piezo1-deficient embryos die at midgestation with defects in vascular remodeling, a process critically influenced by blood flow. We demonstrate that Piezo1 is activated by shear stress, the major type of mechanical force experienced by endothelial cells in response to blood flow. Furthermore, loss of Piezo1 in endothelial cells leads to deficits in stress fiber and cellular orientation in response to shear stress, linking Piezo1 mechanotransduction to regulation of cell morphology. These findings highlight an essential role of mammalian Piezo1 in vascular development during embryonic development.

595 citations

Journal ArticleDOI
TL;DR: Mechanical signals as important regulators of axon pathfinding are identified, suggesting that local tissue stiffness, read out by mechanosensitive ion channels, is critically involved in instructing neuronal growth in vivo.
Abstract: During nervous system development, neurons extend axons along well-defined pathways. The current understanding of axon pathfinding is based mainly on chemical signaling. However, growing neurons interact not only chemically but also mechanically with their environment. Here we identify mechanical signals as important regulators of axon pathfinding. In vitro, substrate stiffness determined growth patterns of Xenopus retinal ganglion cell axons. In vivo atomic force microscopy revealed a noticeable pattern of stiffness gradients in the embryonic brain. Retinal ganglion cell axons grew toward softer tissue, which was reproduced in vitro in the absence of chemical gradients. To test the importance of mechanical signals for axon growth in vivo, we altered brain stiffness, blocked mechanotransduction pharmacologically and knocked down the mechanosensitive ion channel piezo1. All treatments resulted in aberrant axonal growth and pathfinding errors, suggesting that local tissue stiffness, read out by mechanosensitive ion channels, is critically involved in instructing neuronal growth in vivo.

450 citations


Network Information
Related Topics (5)
Signal transduction
122.6K papers, 8.2M citations
80% related
Regulation of gene expression
85.4K papers, 5.8M citations
77% related
Cellular differentiation
90.9K papers, 6M citations
77% related
Transcription factor
82.8K papers, 5.4M citations
77% related
Receptor
159.3K papers, 8.2M citations
76% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023132
2022229
202170
202035
201941
201824