scispace - formally typeset
Search or ask a question
Topic

Piezoelectric sensor

About: Piezoelectric sensor is a research topic. Over the lifetime, 7127 publications have been published within this topic receiving 115903 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a homogeneous isotropic plate is examined with a surfacemounted linear array of piezoelectric ceramic (PZT) disks, which function as actuators to excite flexural waves and also as sensors to receive the waves scattered from structural damage in the plate.
Abstract: This article presents the experimental results of adopting a geophysical migration technique to interpret the ultrasonic flexural wave signals for the purpose of realizing quantitative damage identification in structures. In this study, a homogeneous isotropic plate is examined with a surfacemounted linear array of piezoelectric ceramic (PZT) disk. The piezoelectric disks function as actuators to excite flexural waves and also as sensors to receive the waves scattered from the structural damage in the plate. A prestack reverse-time migration technique, which is an advanced technique in geophysics to reverse the reflection wavefield and to image the Earth’s interior, is then used to back-propagate the scattering waves and to image damage in the plate. The configuration of the experimental setup is presented and its capability of accurately generating and receiving flexural waves is validated by comparing the collected signals with an analytical solution of transient response of a narrowband signal in a piezoelectric sensor/actuator integrated plate using Mindlin plate theory. Finally, the migration results from the scattering waves of an artificial damage are presented. It is shown that the existence of the damage is correctly revealed through migration process in the experiment as it has been shown using synthetic data.

50 citations

Journal ArticleDOI
TL;DR: In this paper, a dome-shaped piezoelectric tactile sensor fabricated by an inflation technique was proposed and demonstrated, which can convert an applied contact force into an electrical signal.
Abstract: In this paper, we propose and demonstrate a dome-shaped piezoelectric tactile sensor fabricated by an inflation technique. The sensor module consists of a 4 × 4 dome-shaped cell, an Ag electrode layer, a polyimide film for electrode protection, a bump structure, and a PDMS diaphragm for supporting the sensor. The piezoelectric sensor can convert an applied contact force into an electrical signal by using the piezoelectric effect. A normal force applied to the sensor deforms the cell, and consequently generates an output voltage proportional to the cell deformation. Therefore, by using a dome-shaped structure instead of the conventional flat structure, the tactile sensor can obtain high sensitivity. To make the dome-shaped PVDF film, a simple fabrication process based on an inflation technique for controlling the trapped air has been developed. The dome-shaped PVDF film was successfully fabricated, and then used as a sensing structure for a tactile sensor. In order to compare the sensitivity of the sensor, a flat tactile sensor was fabricated with the same design as the proposed sensor. The achieved sensitivities of the sensor are 6.028 × 10 −3 V/mN, 7.89 × 10 −3 V/mN, and 8.83 × 10 −3 V/mN, for the flat sensor and for two dome-shaped sensors (with h = 0.5 mm and 1.0 mm), respectively. The sensitivity of the proposed device shows a maximum 46.4% greater than that of a conventional flat tactile sensor. Also, through measurements of frequency response and crosstalk, the proposed tactile sensor showed stable performance.

50 citations

Journal ArticleDOI
28 Jul 2014
Abstract: Relaxor-PbTiO3 piezoelectric single crystals have been widely used in a broad range of electromechanical devices, including piezoelectric sensors, actuators, and transducers. This paper reviews the unique properties of these single crystals for piezoelectric sensors. Design, fabrication and characterization of various relaxor-PT single crystal piezoelectric sensors and their applications are presented and compared with their piezoelectric ceramic counterparts. Newly applicable fields and future trends of relaxor-PT sensors are also suggested in this review paper.

50 citations

Journal ArticleDOI
TL;DR: In this article, a geometrically nonlinear dynamic analysis of functionally graded (FG) laminated composite plates integrated with a patch of active constrained layer damping (ACLD) treatment is considered to be made of the piezoelectric fiber reinforced composite material.

50 citations

Journal ArticleDOI
TL;DR: In this paper, an array of devices that map the strain field on a flexible polyvinylidene difluoride (PVDF) film surface is demonstrated, which can be detected even in the presence of parasitic capacitance.
Abstract: Piezoelectric sensors are useful for a range of applications, but passive arrays suffer from crosstalk and signal attenuation, which have complicated the development of array-based polyvinylidene difluoride (PVDF) sensors. We have used organic field-effect transistors, which are compatible with the low Curie temperature of a flexible piezoelectric polymer, i.e., PVDF, to monolithically fabricate transimpedance amplifiers directly on the sensor surface and convert the piezoelectric charge signal into a current signal, which can be detected even in the presence of parasitic capacitance. The device couples the voltage generated by the PVDF film under strain into the gate of organic thin-film transistors using an arrangement that allows the full piezoelectric voltage to couple to the channel while also increasing charge-retention time. A bipolar detector is created using ultraviolet-ozone treatment to shift the threshold voltage and increase the current of the transistor under both compressive and tensile strain. An array of devices that maps the strain field on a PVDF film surface is demonstrated.

50 citations


Network Information
Related Topics (5)
Finite element method
178.6K papers, 3M citations
82% related
Fracture mechanics
58.3K papers, 1.3M citations
78% related
Carbon nanotube
109K papers, 3.6M citations
77% related
Nonlinear system
208.1K papers, 4M citations
76% related
Ultimate tensile strength
129.2K papers, 2.1M citations
76% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202385
2022134
2021146
2020219
2019251
2018238