scispace - formally typeset
Search or ask a question
Topic

Piezoelectric sensor

About: Piezoelectric sensor is a research topic. Over the lifetime, 7127 publications have been published within this topic receiving 115903 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a new structure (shell or plate) containing an integrated distributed piezoelectric sensor and actuator is proposed, where the distributed sensing layer monitors the structural oscillation due to the direct PDE and the distributed actuator layer suppresses the oscillation via the converse PDE.

642 citations

Journal ArticleDOI
TL;DR: In this paper, the authors discuss properties relevant to sensor applications, including piezoelectric materials that are commercially available and those that are under development, including oxyborate [ReCa4O (BO3)3] single crystals.
Abstract: Piezoelectric materials that can function at high temperatures without failure are desired for structural health monitoring and/or nondestructive evaluation of the next generation turbines, more efficient jet engines, steam, and nuclear/electrical power plants. The operational temperature range of smart transducers is limited by the sensing capability of the piezoelectric material at elevated temperatures, increased conductivity and mechanical attenuation, variation of the piezoelectric properties with temperature. This article discusses properties relevant to sensor applications, including piezoelectric materials that are commercially available and those that are under development. Compared to ferroelectric polycrystalline materials, piezoelectric single crystals avoid domain-related aging behavior, while possessing high electrical resistivities and low losses, with excellent thermal property stability. Of particular interest is oxyborate [ReCa4O (BO3)3] single crystals for ultrahigh temperature applications (>1000°C). These crystals offer piezoelectric coefficients deff, and electromechanical coupling factors keff, on the order of 3–16 pC/N and 6%–31%, respectively, significantly higher than those values of α-quartz piezocrystals (~2 pC/N and 8%). Furthermore, the absence of phase transitions prior to their melting points ~1500°C, together with ultrahigh electrical resistivities (>106 Ω·cm at 1000°C) and thermal stability of piezoelectric properties (< 20% variations in the range of room temperature ~1000°C), allow potential operation at extreme temperature and harsh environments.

634 citations

Journal ArticleDOI
TL;DR: In this article, the behavior of piezoelectric elements as strain sensors is investigated and the performance of PZT and PVDF sensors compared with conventional foil strain gages is demonstrated.
Abstract: This paper investigates the behavior of piezoelectric elements as strain sensors. Strain is measured in terms of the charge generated by the element as a result of the direct piezoelectric ef- fect. Strain measurements from piezoceramic (PZT) and piezofilm (PVDF) sensors are compared with strains from a conventional foil strain gage and the advantages of each type of sensor are dis- cussed, along with their limitations. The sensors are surface bonded to a beam and are calibrated over a frequency range of 5-500 Hz. Correction factors to account for transverse strain and shear lag ef- fects due to the bond layer are analytically derived and experimentally validated. The effect of tem- perature on the output of PZT strain sensors is investigated. Additionally, design of signal condition- ing electronics to collect the signals from the piezoelectric sensors is addressed. The superior performance of piezoelectric sensors compared to conventional strain gages in terms of sensitivity and signal to noise ratio is demonstrated.

624 citations

Journal ArticleDOI
TL;DR: In this article, the authors compared various commercial methods and materials for acoustic transduction, identifying their advantages and limitations, and concluded that the piezoelectric approach offers several advantages, including design cost and simplicity.

608 citations

Journal ArticleDOI
TL;DR: These modal equations indicate that distributed piezoelectric sensors/actuators can be adopted to measure/excite specific modes of one-dimensional plates and beams and a way to create a special two-dimensional modal sensor is presented.
Abstract: A piezoelectric laminate theory that uses the piezoelectric phenomenon to effect distributed control and sensing of structural vibration of a flexible plate has been used to develop a class of distributed sensor/actuators, that of modal sensors/actuators. The one-dimensional modal sensors/actuator equations are first derived theoretically and then examined experimentally. These modal equations indicate that distributed piezoelectric sensors/actuators can be adopted to measure/excite specific modes of one-dimensional plates and beams. If constructed correctly, actuator/observer spillover will not be present in systems adopting these types of sensors/actuators. A mode 1 and a mode 2 sensor for a one-dimensional cantilever plate were constructed and tested to examine the applicability of the modal sensors/actuators. A modal coordinate analyzer which allows us to measure any specific modal coordinate on-line real-time is proposed. Finally, a way to create a special two-dimensional modal sensor is presented.

547 citations


Network Information
Related Topics (5)
Finite element method
178.6K papers, 3M citations
82% related
Fracture mechanics
58.3K papers, 1.3M citations
78% related
Carbon nanotube
109K papers, 3.6M citations
77% related
Nonlinear system
208.1K papers, 4M citations
76% related
Ultimate tensile strength
129.2K papers, 2.1M citations
76% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202385
2022134
2021146
2020219
2019251
2018238