scispace - formally typeset
Search or ask a question
Topic

Piezoelectric sensor

About: Piezoelectric sensor is a research topic. Over the lifetime, 7127 publications have been published within this topic receiving 115903 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors presented a theoretical modeling of the vibration of plate components of a space structure incorporating piezoelectric actuators using the Rayleigh-Ritz method.
Abstract: Theoretical modelling of the vibration of plate components of a space structure incorporating piezoelectric actuators is presented. The equations governing the dynamics of the plate, relating the strains in the piezoelectric elements to the strain induced in the system, are derived for isotropic plates using the Rayleigh-Ritz method. The developed model was used for a simply supported plate. The results show that the model can predict natural frequencies of the plate very accurately. Two criteria for the optimal placement of piezoelectric actuators were suggested using modal controllability and the controllability Grammian. The model was then used to predict the closed-loop frequency response of the plate for active vibration control studies with optimal locations of actuators successfully obtained using genetic algorithms. Significant vibration suppression was demonstrated using optimal actuator placement algorithm developed.

142 citations

Patent
12 Aug 1975
TL;DR: In this article, the reverse piezoelectric effect was exploited for continuous conversion of electric power into mechanical energy of rotation of the rotor of the motor, based on utilization of the reverse PDE effect for continuous transformation of electric energy into mechanical vibrations.
Abstract: A piezoelectric motor, bases on utilization of the reverse piezoelectric effect for continuous conversion of electric power into mechanical energy of rotation of the rotor. The piezoelectric motor includes a rotor and a stator, at least one of them incorporating a vibrator of mechanical oscillation, having a piezoelectric device connected to a voltage source and converting electric power into mechanical vibrations. The piezoelectric motor contains no windings and provides considerable driving torques, owing to the stator and rotor being urged against each other. The structure of the piezoelectric motor is determined by the arrangement of the piezoelectric device in the rotor and stator, the type of oscillation being excited, the shape of the piezoelectric device, the arrangement of its electrodes, their shape and electrical connection, as well as by the polarization of the piezoelectric material. Various combinations of these features offer a great variety of structures and designs of the piezoelectric motors, the piezoelectric motor being supplied from a voltage source with supersonic frequency.

142 citations

Journal ArticleDOI
TL;DR: In this paper, an effort to extend the applicability of the EMI sensing technique for strength gain monitoring of early age concrete is made for early-age concrete, where PZT (piezoelectric lead zirconate titanate) patches are employed to sense the EEM signature of curing concrete.
Abstract: The recent advent of smart materials, such as piezoelectric materials, shape-memory alloys, and optical fibers, has added a new dimension to present structural health monitoring techniques. In particular, the electro-mechanical impedance (EMI) sensing technique utilizing piezoelectric materials has emerged as a potential tool for the implementation of a built-in monitoring system for damage detection of civil structures. However, there is little effort to apply this technique for concrete monitoring. In this study, an effort to extend the applicability of the EMI sensing technique is made for strength gain monitoring of early age concrete. PZT (piezoelectric lead zirconate titanate) patches are employed to sense the EMI signature of curing concrete. A series of experiments was conducted on concrete specimens to verify the applicability of the EMI sensing technique. The results show the excellent potential of the EMI sensing technique as a practical and reliable nondestructive method for strength gain monitoring.

141 citations

Journal ArticleDOI
TL;DR: In this paper, the authors employed periodic arrays of shunted, piezoelectric patches to control wave propagation attenuation and vibration reduction for plate structures, and corresponding vibrations.
Abstract: Periodic arrays of shunted, piezoelectric patches are employed to control waves propagating over the surface of plate structures, and corresponding vibrations. The shunted, piezoelectric patches act as sources of impedance mismatch, which gives rise to interference phenomena resulting from the interaction between incident, reflected and transmitted waves. Periodically distributed mismatch zones, i.e., the piezo patches, produce frequency dependent, wave-dynamic characteristics, which include the generation of band gaps, or stop bands in the frequency domain. The extent of induced band gaps depends on the mismatch in impedance generated by each patch. The total impedance mismatch, in turn, is determined by the added mass and stiffness of each patch as well as the shunting electrical impedance. Proper selection of the shunting electric-circuit thus provides control over the attenuation capabilities of the piezo-plate structure, as well as the ability to adapt to changing excitation conditions. Control of wave-propagation attenuation and vibration reduction for plates with periodic, shunted, piezoelectric patches is demonstrated numerically, employing finite-element models of the considered structures.

141 citations

Journal ArticleDOI
TL;DR: In this article, a semi-active energy rate multi-modal vibration control technique is developed for a piezoceramic actuator coupled to a switching resistor/inductor shunt.
Abstract: In this paper, a novel semi-active energy rate multi-modal vibration control technique is developed for a piezoceramic actuator coupled to a switching resistor/inductor shunt. The technique works by briefly connecting a resistor/inductor shunt to a piezoceramic actuator in order to apply the necessary signed charge to allow energy dissipation. The switch timing is determined by a control scheme that observes the rate of energy change in controlled modes. The control scheme is developed in the paper, and is simplified to enable practical implementation. This new multi-modal control law is applied to both a simple numerical and an experimental test structure. The results from the numerical and experimental tests show that the energy rate multi-mode control law is able to dissipate energy from one, two and three modes of the flexible structures using a single actuator.

139 citations


Network Information
Related Topics (5)
Finite element method
178.6K papers, 3M citations
82% related
Fracture mechanics
58.3K papers, 1.3M citations
78% related
Carbon nanotube
109K papers, 3.6M citations
77% related
Nonlinear system
208.1K papers, 4M citations
76% related
Ultimate tensile strength
129.2K papers, 2.1M citations
76% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202385
2022134
2021146
2020219
2019251
2018238