scispace - formally typeset
Search or ask a question
Topic

Piezoelectric sensor

About: Piezoelectric sensor is a research topic. Over the lifetime, 7127 publications have been published within this topic receiving 115903 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a Kirigami technique with linear cut patterns has been employed to design a stretchable piezoelectric sensor with enhanced pieziolectricity, which shows promising in stretchable electronics for biomedical devices.
Abstract: Rapid advances in sensing technologies are leading to the development of integrated wearable electronics for biomedical applications. Piezoelectric materials have great potential for implantable devices because of their self-powered sensing capacities. The soft and highly deformable surfaces of most tissues in the human body, however, restrict the wide use of piezoelectric materials, which feature low stretchability. Flexible piezoelectric polyvinylidene fluoride films that could conformably integrate with human bodies would have advantages in health monitoring. Here, a Kirigami technique with linear cut patterns has been employed to design a stretchable piezoelectric sensor with enhanced piezoelectricity. A parametric Finite Element Analysis study is first performed to investigate its mechanical behaviour, followed by experiments. An inter-segment electrode connection approach is proposed to further enhance the piezoelectric performance of the sensor. The voltage output shows superior performance with 2.6 times improvement compared to conventionally continuous electrodes. Dynamic tests with a range of frequencies and strains are performed to validate the sensor design. With its high performance in large strain measurements, the Kirigami-based sensing system shows promise in stretchable electronics for biomedical devices.

58 citations

Journal ArticleDOI
TL;DR: In this paper, a PZT piezoelectric sensor is installed on an appropriate location on the transducer in order to measure the ultrasonic amplitude and bonding time during the bonding process.
Abstract: This paper describes an ultrasonic wire-bond quality monitoring technique which involves the detection of changes in the mechanical impedance of the bond zone during bond formation by monitoring the changes in the ultrasonic vibrations of an ultrasonic wire-bonding transducer system. A lead zirconate titanate (PZT) piezoelectric ceramic having properties similar to the commercial PZT-5A has been selected as the sensor material. A PZT piezoelectric sensor is installed on an appropriate location on the transducer in order to measure the ultrasonic amplitude and bonding time during the bonding process. This sensor has dimensions 1 mm × 1 mm × 0.245 mm to avoid excessive loading on the transducer and to obtain a flat frequency response. A bond quality monitoring system has been developed to process and record the non-linear signal detected by the sensor. More significant changes are observed at the higher-frequency harmonics (second harmonic) of the ultrasonic signal. Good correlation is found between the change in the second harmonic and the bond quality. Bonding process drift towards unacceptable bond quality can be identified. This technique will be used to develop a multiparameter-based automatic process-control system for wire bonding.

58 citations

Patent
23 May 1997
TL;DR: In this article, a piezoelectric film-type element is constructed by successively and integrally forming and stacking, on a ceramic substrate, a single flat film-shaped lower electrode, a P2P layer, and an upper electrode comprising a plurality of alternately arranged strip electrodes.
Abstract: A piezoelectric film-type element includes a piezoelectric operating layer constructed by successively and integrally forming and stacking, on a ceramic substrate, a single flat film-shaped lower electrode, a piezoelectric layer, and an upper electrode comprising a plurality of alternately arranged strip electrodes. The lower electrode is designated as a first electrode, and the upper electrode is designated as a second electrode. A first piezoelectric operating means is constructed by the first and second electrodes and the piezoelectric layer, while a second piezoelectric operating means is constructed by the second electrode and the piezoelectric layer. No other piezoelectric layer is stacked on the foregoing piezoelectric operating layer. Operating characteristics of the piezoelectric operating section can be sufficiently utilized by constructing the piezoelectric film-type element as described above. Thus it is possible to provide a piezoelectric film-type element which has excellent performance, has a compact size and can operate at a low voltage.

58 citations

Journal ArticleDOI
TL;DR: In this paper, the authors derived field equations of the coupled structure governing the coupled longitudinal and bending motions of the resonator using linear constitutive equations, slender beam approximations, and Hamilton's principle.
Abstract: Piezoelectrically excited, resonant, elastic beams find wide use as piezoelectric fans, optical choppers, MEMS sensors, and piezoelectric motors. The devices consist of either one piezoelectric ceramic patch (piezopatch) bonded on one side (asymmetric configuration), or of two oppositely poled patches placed symmetrically on either side of a thin, flexible elastic beam (symmetric configuration). Field equations of the coupled structure governing the coupled longitudinal and bending motions of the resonator are derived using linear constitutive equations, slender beam approximations, and Hamilton's principle. Analytical solutions are found to the coupled eigenvalue problem. Eigenvalues and eigenfunctions for the short-circuited and open-circuited configurations are predicted analytically and are found to be in excellent agreement with results from three-dimensional finite element simulations. Electromechanical coupling factors (EMCF) are computed using the analytical and finite element model and optimal resonator geometries are identified for maximal EMCF. The EMCF predictions are also compared with experiments for an asymmetrically configured resonator. The analytical solution provides a convenient tool for the optimal design of such devices.

58 citations

Journal ArticleDOI
TL;DR: In this paper, a commercially available piezoelectric bimorph cantilever was used as a pressure and temperature sensor to detect the change in the resonance frequencies due to the drag force of the surrounding gas.
Abstract: Since the development of the atomic force microscope, interest in microfabricated cantilevers has grown Cantilevers are excellent micromechanical sensors In this work, we use a commercially available piezoelectric bimorph cantilever as pressure and temperature sensor The piezoelectric layer acts as both sensor and actuator The sensor detects the change in the resonance frequencies due to the drag force of the surrounding gas The frequency shift of the resonant modes is measured as a function of the pressure and the temperature The results show that both pressure and temperature can be measured simultaneously using the piezoelectric bimorph cantilever’s resonant frequencies

58 citations


Network Information
Related Topics (5)
Finite element method
178.6K papers, 3M citations
82% related
Fracture mechanics
58.3K papers, 1.3M citations
78% related
Carbon nanotube
109K papers, 3.6M citations
77% related
Nonlinear system
208.1K papers, 4M citations
76% related
Ultimate tensile strength
129.2K papers, 2.1M citations
76% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202385
2022134
2021146
2020219
2019251
2018238