scispace - formally typeset
Search or ask a question

Showing papers on "Piezoelectricity published in 2019"


Journal ArticleDOI
TL;DR: A comprehensive review of the latest developments of the various types of perovskite piezoelectric ceramic systems is presented in this article, with special attention given to three promising families of lead-free perovsite ferroelectrics: the barium titanate, alkaline niobate and bismuth pervskites.
Abstract: High strain piezoelectric ceramics are the state-of-the-art materials for high precision, positioning devices. A comprehensive review of the latest developments of the various types of perovskite piezoelectric ceramic systems is presented herein, with special attention given to three promising families of lead-free perovskite ferroelectrics: the barium titanate, alkaline niobate and bismuth perovskites. Included in this review are details of phase transition behavior, strain enhancement approaches, material reliabilities as well as the status of some promising applications. This current review describes both compositional and structural engineering approaches that are intended to achieve enhanced strain properties in perovskite piezoelectric ceramics. The factors that affect the strain behavior of high-strain perovskite piezoelectric ceramics are addressed. The reliability characteristics of these high-strain ferroelectrics as well as the recent approaches to the long-term electrical, thermal and time-stability enhancement are summarized. Several promising applications of high-strain perovskite materials are introduced, which take advantages of their characteristics; examples include high-energy storage, pyroelectric and electro-caloric effect and luminescent properties.

470 citations


Journal ArticleDOI
19 Apr 2019-Science
TL;DR: Rare-earth doping is identified as a general strategy for introducing local structural heterogeneity in order to enhance the piezoelectricity of relaxor ferroelectric crystals.
Abstract: High-performance piezoelectrics benefit transducers and sensors in a variety of electromechanical applications. The materials with the highest piezoelectric charge coefficients (d33) are relaxor-PbTiO3 crystals, which were discovered two decades ago. We successfully grew Sm-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 (Sm-PMN-PT) single crystals with even higher d33 values ranging from 3400 to 4100 picocoulombs per newton, with variation below 20% over the as-grown crystal boule, exhibiting good property uniformity. We characterized the Sm-PMN-PT on the atomic scale with scanning transmission electron microscopy and made first-principles calculations to determine that the giant piezoelectric properties arise from the enhanced local structural heterogeneity introduced by Sm3+ dopants. Rare-earth doping is thus identified as a general strategy for introducing local structural heterogeneity in order to enhance the piezoelectricity of relaxor ferroelectric crystals.

442 citations


Journal ArticleDOI
15 Mar 2019-Science
TL;DR: A molecular material with piezoelectric properties comparable to the industry-standard ceramic lead zirconate titanate is described, the exceptional properties come from finding a molecular solid-solution series that allows for compositional optimization of the piezoeselectric properties.
Abstract: Piezoelectric materials produce electricity when strained, making them ideal for different types of sensing applications. The most effective piezoelectric materials are ceramic solid solutions in which the piezoelectric effect is optimized at what are termed morphotropic phase boundaries (MPBs). Ceramics are not ideal for a variety of applications owing to some of their mechanical properties. We synthesized piezoelectric materials from a molecular perovskite (TMFM)x(TMCM)1–xCdCl3 solid solution (TMFM, trimethylfluoromethyl ammonium; TMCM, trimethylchloromethyl ammonium, 0 ≤ x ≤ 1), in which the MPB exists between monoclinic and hexagonal phases. We found a composition for which the piezoelectric coefficient d33 is ~1540 picocoulombs per newton, comparable to high-performance piezoelectric ceramics. The material has potential applications for wearable piezoelectric devices.

339 citations


Journal ArticleDOI
27 Aug 2019
TL;DR: In this paper, the state-of-the-art in micro-scale piezoelectric energy harvesting, summarizing key metrics such as power density and bandwidth of reported structures at low frequency input.
Abstract: Abstract Piezoelectric microelectromechanical systems (PiezoMEMS) are attractive for developing next generation self-powered microsystems. PiezoMEMS promises to eliminate the costly assembly for microsensors/microsystems and provide various mechanisms for recharging the batteries, thereby, moving us closer towards batteryless wireless sensors systems and networks. In order to achieve practical implementation of this technology, a fully assembled energy harvester on the order of a quarter size dollar coin (diameter=24.26 mm, thickness=1.75 mm) should be able to generate about 100 μW continuous power from low frequency ambient vibrations (below 100 Hz). This paper reviews the state-of-the-art in microscale piezoelectric energy harvesting, summarizing key metrics such as power density and bandwidth of reported structures at low frequency input. This paper also describes the recent advancements in piezoelectric materials and resonator structures. Epitaxial growth and grain texturing of piezoelectric materials is being developed to achieve much higher energy conversion efficiency. For embedded medical systems, lead-free piezoelectric thin films are being developed and MEMS processes for these new classes of materials are being investigated. Non-linear resonating beams for wide bandwidth resonance are also reviewed as they would enable wide bandwidth and low frequency operation of energy harvesters. Particle/granule spray deposition techniques such as aerosol-deposition (AD) and granule spray in vacuum (GSV) are being matured to realize the meso-scale structures in a rapid manner. Another important element of an energy harvester is a power management circuit, which should maximize the net energy harvested. Towards this objective, it is essential for the power management circuit of a small-scale energy harvester to dissipate minimal power, and thus it requires special circuit design techniques and a simple maximum power point tracking scheme. Overall, the progress made by the research and industrial community has brought the energy harvesting technology closer to the practical applications in near future.

275 citations


Journal ArticleDOI
TL;DR: This strategy may be applied to create the next generation of intelligent infrastructure, able to perform a variety of structural and functional tasks, including simultaneous impact absorption and monitoring, three-dimensional pressure mapping and directionality detection.
Abstract: Piezoelectric coefficients are constrained by the intrinsic crystal structure of the constituent material. Here we describe design and manufacturing routes to previously inaccessible classes of piezoelectric materials that have arbitrary piezoelectric coefficient tensors. Our scheme is based on the manipulation of electric displacement maps from families of structural cell patterns. We implement our designs by additively manufacturing free-form, perovskite-based piezoelectric nanocomposites with complex three-dimensional architectures. The resulting voltage response of the activated piezoelectric metamaterials at a given mode can be selectively suppressed, reversed or enhanced with applied stress. Additionally, these electromechanical metamaterials achieve high specific piezoelectric constants and tailorable flexibility using only a fraction of their parent materials. This strategy may be applied to create the next generation of intelligent infrastructure, able to perform a variety of structural and functional tasks, including simultaneous impact absorption and monitoring, three-dimensional pressure mapping and directionality detection. Piezoelectrics convert force into electrical charge, and vice versa, but the coefficients that determine piezoelectric behaviour are constrained by crystal structure. Here, metamaterials are 3D printed that show arbitrary piezoelectric coefficients.

274 citations


Journal ArticleDOI
TL;DR: The most promising routes toward significant improvements in the piezoelectric response and energy-harvesting performance of such materials are discussed in this paper, where the effects of the presence of various lead-free components in the structure of the polyvinylidene fluoride (PVDF) polymers on their piezoresponse or energy harvesting performance are reviewed.

198 citations


Journal ArticleDOI
TL;DR: In this paper, a few-layer transition metal dichalcogenides (TMDs) were used for water splitting and degradation of organic pollutants, and the authors showed that the H2 evolution rate reached 29.1, 15.4, and 11.3 µmolg−1/h−1 for MoS2, WS2, and WSe2 nanosheets respectively, under mechanical force provided by ultrasonic vibration.

154 citations


Journal ArticleDOI
TL;DR: Employing the high piezoelectric properties of BaTiO3 NPs, this study demonstrates an overall water-splitting process with the highest hydrogen production efficiency hitherto reported, with a H2 production rate of 655 μmolg-1h-1, which could rival excellent photocatalysis system.
Abstract: Piezocatalysis, converting mechanical vibration into chemical energy, has emerged as a promising candidate for water-splitting technology. However, the efficiency of the hydrogen production is quite limited. We herein report well-defined 10 nm BaTiO3 nanoparticles (NPs) characterized by a large electro-mechanical coefficient which induces a high piezoelectric effect. Atomic-resolution high angle annular dark field scanning transmission electron microscopy (HAADF-STEM) and scanning probe microscopy (SPM) suggests that piezoelectric BaTiO3 NPs display a coexistence of multiple phases with low energy barriers and polarization anisotropy which results in a high electro-mechanical coefficient. Landau free energy modeling also confirms that the greatly reduced polarization anisotropy facilitates polarization rotation. Employing the high piezoelectric properties of BaTiO3 NPs, we demonstrate an overall water-splitting process with the highest hydrogen production efficiency hitherto reported, with a H2 production rate of 655 μmol g-1 h-1 , which could rival excellent photocatalysis system. This study highlights the potential of piezoelectric catalysis for overall water splitting.

148 citations


Journal ArticleDOI
TL;DR: In this article, the authors investigated the atomistic origin of negative longitudinal piezoelectricity in 2D layered ferroelectric CuInP2S6 solids with single crystal x-ray crystallography and density functional theory calculations.
Abstract: Recent research on piezoelectric materials is predominantly devoted to enhancing the piezoelectric coefficient, but overlooks its sign, largely because almost all of them exhibit positive longitudinal piezoelectricity. The only experimentally known exception is ferroelectric polymer poly(vinylidene fluoride) and its copolymers, which condense via weak van der Waals (vdW) interaction and show negative piezoelectricity. Here we report quantitative determination of giant intrinsic negative longitudinal piezoelectricity and electrostriction in another class of vdW solids—two-dimensional (2D) layered ferroelectric CuInP2S6. With the help of single crystal x-ray crystallography and density-functional theory calculations, we unravel the atomistic origin of negative piezoelectricity in this system, which arises from the large displacive instability of Cu ions coupled with its reduced lattice dimensionality. Furthermore, the sizable piezoelectric response and negligible substrate clamping effect of the 2D vdW piezoelectric materials warrant their great potential in nanoscale, flexible electromechanical devices.

139 citations


Journal ArticleDOI
Yu Chen1, Junyi Liu1, Jiabing Yu1, Yaguang Guo1, Qiang Sun1 
TL;DR: The combination of the SOC-induced spin splitting and large piezoelectricity endows the Janus Te2Se structures with potential for applications in spintronics, flexible electronics and piezOElectric devices.
Abstract: Structural symmetry-breaking can lead to novel electronic and piezoelectric properties in two-dimensional (2D) materials. In this paper, we propose a 2D Janus tellurene (Te2Se) monolayer with asymmetric Se/Te surfaces and its derived multilayer structures. The band structure calculations show that the 2D Janus Te2Se monolayer is an indirect gap semiconductor, and the intrinsic mirror asymmetry combined with the spin-orbit coupling induces the Rashba spin splitting and the out-of-plane spin polarization. Moreover, the absence of both the inversion symmetry and out-of-plane mirror symmetry, together with flexible mechanical properties, results in large in-plane and out-of-plane piezoelectric coefficients that are valuable in 2D piezoelectric materials. Furthermore, the out-of-plane piezoelectric effects can exist in multilayer structures under different stacking sequences while the in-plane piezoelectric effect can only exist in some specific stacking patterns. The piezoelectric coefficients of the Janus Te2Se monolayer and multilayers exceed those of many Janus transition metal dichalcogenides and other well-known piezoelectric materials (e.g., α-quartz and wurtzite-AlN). The combination of the SOC-induced spin splitting and large piezoelectricity endows the Janus Te2Se structures with potential for applications in spintronics, flexible electronics and piezoelectric devices.

128 citations


Journal ArticleDOI
TL;DR: In this paper, the effect of chemical modification on the enhancement of potassium sodium niobate lead-free piezoelectric materials has been discussed from the aspects of ionic radius, valency, electronegativity and hybridisation, as well as their influence on thermal stability and fatigue behaviour.
Abstract: Piezoelectric materials convert mechanical energy into electric energy, and vice versa. They have been applied in many critical fields, such as motor vehicles, medical devices, the military and aerospace. Recently, the development of lead-free piezoelectrics due to environmental concerns has attracted enormous attention in both scientific and industrial fields. This review summarises the effect of chemical modification on the enhancement of potassium sodium niobate lead-free piezoelectric materials. The origin of the high piezoelectricity is attributed to the construction of phase coexistence and local heterogeneities. The choice of dopants is discussed from the aspects of ionic radius, valency, electronegativity and hybridisation, as well as their influence on thermal stability and fatigue behaviour. An assessment of heterogeneity at different length scales on the piezoelectric performance is provided.

Journal ArticleDOI
TL;DR: In this article, a piezoelectric, strain-controlled antiferromagnetic (AFM) memory has been demonstrated in strong magnetic fields and has potential for low-energy and high-density memory applications.
Abstract: Spintronic devices based on antiferromagnetic (AFM) materials hold the promise of fast switching speeds and robustness against magnetic fields. Different device concepts have been predicted and experimentally demonstrated, such as low-temperature AFM tunnel junctions that operate as spin-valves, or room-temperature AFM memory, for which either thermal heating in combination with magnetic fields, or Neel spin-orbit torque is used for the information writing process. On the other hand, piezoelectric materials were employed to control magnetism by electric fields in multiferroic heterostructures, which suppresses Joule heating caused by switching currents and may enable low energy-consuming electronic devices. Here, we combine the two material classes to explore changes of the resistance of the high-Neel-temperature antiferromagnet MnPt induced by piezoelectric strain. We find two non-volatile resistance states at room temperature and zero electric field, which are stable in magnetic fields up to 60 T. Furthermore, the strain-induced resistance switching process is insensitive to magnetic fields. Integration in a tunnel junction can further amplify the electroresistance. The tunneling anisotropic magnetoresistance reaches ~11.2% at room temperature. Overall, we demonstrate a piezoelectric, strain-controlled AFM memory which is fully operational in strong magnetic fields and has potential for low-energy and high-density memory applications.

Journal ArticleDOI
TL;DR: Self-powered piezoelectric sensors made of these newly developed 2D layered materials have been successfully used for real-time health monitoring, proving their suitability for the fabrication of flexible piezotronic devices due to their large piezOElectric responses and excellent mechanical durability.
Abstract: Piezoelectric two-dimensional (2D) van der Waals (vdWs) materials are highly desirable for applications in miniaturized and flexible/wearable devices. However, the reverse-polarization between adjacent layers in current 2D layered materials results in decreasing their in-plane piezoelectric coefficients with layer number, which limits their practical applications. Here, we report a class of 2D layered materials with an identical orientation of in-plane polarization. Their piezoelectric coefficients (e22) increase with layer number, thereby allowing for the fabrication of flexible piezotronic devices with large piezoelectric responsivity and excellent mechanical durability. The piezoelectric outputs can reach up to 0.363 V for a 7-layer α-In2Se3 device, with a current responsivity of 598.1 pA for 1% strain, which is 1 order of magnitude higher than the values of the reported 2D piezoelectrics. The self-powered piezoelectric sensors made of these newly developed 2D layered materials have been successfully used for real-time health monitoring, proving their suitability for the fabrication of flexible piezotronic devices due to their large piezoelectric responses and excellent mechanical durability.

Journal ArticleDOI
TL;DR: New plastic/ferroelectric ionic molecular crystals that exhibit remarkably small coercive electric fields at room temperature are reported that represent highly attractive prospects for device elements with a diverse range of applications.
Abstract: Molecular ferroelectric crystals have attracted growing interest as potential alternatives to conventional lead-based ceramic ferroelectrics. We have recently discovered that a class of compounds known as plastic crystals can show multiaxial ferroelectricity, which allows ferroelectric performance even in polycrystalline forms. Here, we report new plastic/ferroelectric ionic molecular crystals that exhibit remarkably small coercive electric fields at room temperature. The easily switchable ferroelectric polarization enables low-voltage switching operations and high-frequency performance. Such ferroelectric crystals can be readily processed into bulk polycrystalline forms with desired shapes that are characterized by unprecedentedly high pyroelectric figures of merit and large piezoelectricity. These multifunctional molecular crystals represent highly attractive prospects for device elements with a diverse range of applications, which will significantly boost the development of molecular ferroelectric crystals.

Journal ArticleDOI
TL;DR: A novel 4 × 4 array sensor system is developed to sense real-time temperature and pressure variations induced by a finger that has potential applications in machine intelligence and man-machine interaction.
Abstract: Ferroelectric materials use both the pyroelectric effect and piezoelectric effect for energy conversion. A ferroelectric BaTiO3 -based pyro-piezoelectric sensor system is demonstrated to detect temperature and pressure simultaneously. The voltage signal of the device is found to enhance with increasing temperature difference with a sensitivity of about 0.048 V °C-1 and with applied pressure with a sensitivity of about 0.044 V kPa-1 . Moreover, no interference appears in the output voltage signals when piezoelectricity and pyroelectricity are conjuncted in the device. A novel 4 × 4 array sensor system is developed to sense real-time temperature and pressure variations induced by a finger. This system has potential applications in machine intelligence and man-machine interaction.

Journal ArticleDOI
TL;DR: In this paper, a fully integrated two-degree-of-freedom (2DOF) MEMS piezoelectric vibration energy harvester (p-VEH) was designed and fabricated using ZnO thin films for converting kinetic energy into electrical energy.
Abstract: Zinc oxide (ZnO) is an environmental-friendly semiconducting, piezoelectric and non-ferroelectric material, and plays an essential role for applications in microelectromechanical systems (MEMS). In this work, a fully integrated two-degree-of-freedom (2DOF) MEMS piezoelectric vibration energy harvester (p-VEH) was designed and fabricated using ZnO thin films for converting kinetic energy into electrical energy. The 2DOF energy harvesting system comprises two subsystems: the primary one for energy conversion and the auxiliary one for frequency adjustment. Piezoelectric ZnO thin film was deposited using a radio-frequency magnetron sputtering method onto the primary subsystem for energy conversion from mechanical vibration to electricity. Dynamic performance of the 2DOF resonant system was analyzed and optimized using a lumped parameter model. Two closely located but separated peaks were achieved by precisely adjusting mass ratio and frequency ratio of the resonant systems. The 2DOF MEMS p-VEH chip was fabricated through a combination of laminated surface micromachining process, double-side alignment and bulk micromachining process. When the fabricated prototype was subjected to an excitation acceleration of 0.5 g, two close resonant peaks at 403.8 and 489.9 Hz with comparable voltages of 10 and 15 mV were obtained, respectively.

Journal ArticleDOI
TL;DR: In this article, a small piece of polyacrylonitrile (PAN) nonwoven membrane (e.g. 5 cm2) was subjected to compressive impact, it can generate up to 2.0 V of voltage, the electrical outputs of which are even higher than that of PVDF nanofiber membranes at the same condition.

Journal ArticleDOI
TL;DR: In this paper, a review of the latest techniques for utilizing the piezoelectric materials in energy harvesters, sensors, and actuators for various building systems is presented.
Abstract: Piezoelectric materials are capable of transforming mechanical strain and vibration energy into electrical energy. This property allows opportunities for implementing renewable and sustainable energy through power harvesting and self-sustained smart sensing in buildings. As the most common construction material, plain cement paste lacks satisfactory piezoelectricity and is not efficient at harvesting the electrical energy from the ambient vibrations of a building system. In recent years, many techniques have been proposed and applied to improve the piezoelectric capacity of cement-based composite, namely admixture incorporation (e.g. lead zirconate titanate, barium zirconate titanate, carbon particles, and steel fibers) and physical treatments (e.g. thermal heating and electrical field application). The successful application of piezoelectric materials for sustainable building development not only relies on understanding the mechanism of the piezoelectric properties of various building components, but also the latest developments and implementations in the building industry. Therefore, this review systematically illustrates research efforts to develop new construction materials with high piezoelectricity and energy storage capacity. In addition, this article discusses the latest techniques for utilizing the piezoelectric materials in energy harvesters, sensors, and actuators for various building systems. With advanced methods for improving the cementitious piezoelectricity and applying the material piezoelectricity for different building functions, more renewable and sustainable building systems are anticipated.

Journal ArticleDOI
TL;DR: In this paper, the material properties of Pb(Zr,Ti)O3 (PZT) thin film with a LaNiO3 buffer layer on an ultra-thin Ni-Cr-based austenitic steel metal foil substrate are systematically investigated for flexible piezoelectric vibrational energy harvesting device applications.

Journal ArticleDOI
TL;DR: In this article, the vibration characteristics of high-speed rotating graphene-nanoplatelets (GNP)-reinforced composite cylindrical nanoshell coupled with a piezoelectric actuator (PIAC) are investigated.
Abstract: In this article, the vibration characteristics of high-speed rotating graphene-nanoplatelets (GNP)-reinforced composite cylindrical nanoshell coupled with a piezoelectric actuator (PIAC) are investigated. This composite nanostructure rotates around the axial direction, and the Coriolis and centrifugal effects are considered in the formulation. The material properties of piecewise graphene-reinforced composites (GNPRCs) are assumed to be graded in the thickness direction of the cylindrical nanoshell and estimated through a nanomechanical model. In the current study, the effects of angular velocity, piezoelectric layer, GNPRC and size-effects on the frequency of the spinning GNPRC cylindrical nanoshell coupled with PIAC are studied for the first time. The governing equations and boundary conditions are developed using the minimum potential energy and solved with the aid of generalized differential quadrature (GDQM). In addition, due to existence of piezoelectric layer, Maxwell’s equation is derived. The results show that angular velocity, piezoelectric layer, GNP distribution pattern, length scale parameter and GNP weight function play an important role in the vibrational characteristics of the spinning GNP cylindrical nanoshell coupled with PIAC. The results of the current study are useful for design of materials science, micro-electro-mechanical systems and nanoelectromechanical systems such as nanoactuators and nanosensors.

Journal ArticleDOI
TL;DR: In this paper, an antisolvent-assisted collision technique (ACT) was used to synthesize an environmentally-friendly lead-free methylammonium tin iodide (MASnI3) perovskite.

Journal ArticleDOI
TL;DR: An antiferromagnetic memory with piezoelectric strain control can be operated in high magnetic fields and combines a small device footprint with low switching power and has the potential for low-energy and high-density memory applications.
Abstract: Spintronic devices based on antiferromagnetic (AFM) materials hold the promise of fast switching speeds and robustness against magnetic fields1–3. Different device concepts have been predicted4,5 and experimentally demonstrated, such as low-temperature AFM tunnel junctions that operate as spin-valves6, or room-temperature AFM memory, for which either thermal heating in combination with magnetic fields7 or Neel spin–orbit torque8 is used for the information writing process. On the other hand, piezoelectric materials were employed to control magnetism by electric fields in multiferroic heterostructures9–12, which suppresses Joule heating caused by switching currents and may enable low-energy-consuming electronic devices. Here, we combine the two material classes to explore changes in the resistance of the high-Neel-temperature antiferromagnet MnPt induced by piezoelectric strain. We find two non-volatile resistance states at room temperature and zero electric field that are stable in magnetic fields up to 60 T. Furthermore, the strain-induced resistance switching process is insensitive to magnetic fields. Integration in a tunnel junction can further amplify the electroresistance. The tunnelling anisotropic magnetoresistance reaches ~11.2% at room temperature. Overall, we demonstrate a piezoelectric, strain-controlled AFM memory that is fully operational in strong magnetic fields and has the potential for low-energy and high-density memory applications. An antiferromagnetic memory with piezoelectric strain control can be operated in high magnetic fields and combines a small device footprint with low switching power.

Journal ArticleDOI
TL;DR: In this paper, a flexible zinc oxide/poly(vinylidene fluoride) (ZnO/PVDF) nanocomposite was prepared by electrospinning for fabricating a piezoelectric nanogenerator (PNG).
Abstract: A novel flexible zinc oxide/poly(vinylidene fluoride) (ZnO/PVDF) nanocomposite was prepared by electrospinning for fabricating a piezoelectric nanogenerator (PNG). The ZnO nanoparticles (NPs) and nanorods (NRs) were used as nanofillers of piezoelectric PVDF to prepare fibrous nanocomposite membranes. It has been found that the addition of piezoelectric ZnO NPs and NRs can improve the overall performance of the PNGs fabricated with the electrospun membranes. A large electrical throughput (open circuit voltage ∼85 V and short circuit current ∼2.2 μA) from the ZnO NR/PVDF fiber membrane-based PNG (ZR-PNG) indicates that ZnO NRs are effective functional fillers for PVDF. The high aspect ratio and flexibility characteristics of ZnO NRs were found to be highly beneficial for improving the piezoelectric properties of the nanocomposites. ZnO NRs act as nucleating agents of β-phase PVDF, and ZnO NRs can also produce piezoelectric charges when they deform with the composite fibrous membrane. It has been concluded t...

Journal ArticleDOI
TL;DR: Two-dimensional piezoelectric hexagonal boron nitride nanoflakes were synthesized by a chemical exfoliation process and transferred onto an electrode line-patterned plastic substrate to characterize the energy harvesting ability of individual NF by external stress to demonstrate the f-PEH based on 2D piezo-materials.
Abstract: Two-dimensional (2D) piezoelectric hexagonal boron nitride nanoflakes (h-BN NFs) were synthesized by a mechanochemical exfoliation process and transferred onto an electrode line-patterned plastic substrate to characterize the energy harvesting ability of individual NFs by external stress. A single BN NF produced alternate piezoelectric output sources of ∼50 mV and ∼30 pA when deformed by mechanical bendings. The piezoelectric voltage coefficient (g11) of a single BN NF was experimentally determined to be 2.35 × 10-3 V·m·N-1. The piezoelectric composite composed of BN NFs and an elastomer was spin-coated onto a bulk Si substrate and then transferred onto the electrode-coated plastic substrates to fabricate a BN NFs-based flexible piezoelectric energy harvester (f-PEH) which converted a piezoelectric voltage of ∼9 V, a current of ∼200 nA, and an effective output power of ∼0.3 μW. This result provides a new strategy for precisely characterizing the energy generation ability of piezoelectric nanostructures and for demonstrating f-PEH based on 2D piezomaterials.

Journal ArticleDOI
TL;DR: The authors not only show that PFM measurements will yield a signal even in non-piezoelectric materials via induced flexelectricity, but also introduce a protocol to distinguish these from real signals.
Abstract: Converse flexoelectricity is a mechanical stress induced by an electric polarization gradient. It can appear in any material, irrespective of symmetry, whenever there is an inhomogeneous electric field distribution. This situation invariably happens in piezoresponse force microscopy (PFM), which is a technique whereby a voltage is delivered to the tip of an atomic force microscope in order to stimulate and probe piezoelectricity at the nanoscale. While PFM is the premier technique for studying ferroelectricity and piezoelectricity at the nanoscale, here we show, theoretically and experimentally, that large effective piezoelectric coefficients can be measured in non-piezoelectric dielectrics due to converse flexoelectricity.

Journal ArticleDOI
TL;DR: Two strategies to improve the piezoelectric sensing performance of polymer-based piezOElectric nanofibers are reported, which include the formation of barium titanate (BTO)/P(VDF-TrFE) composite nan ofibers and fabrication of penetrated electrodes to enlarge the interfacial area.
Abstract: Piezoelectric polymers with good flexibility have attracted tremendous attention in wearable sensors and energy harvesters. As the piezoelectricity of polymers such as polyvinylidene fluoride (PVDF) and polyvinylidene fluoride-trifluoroethylene [P(VDF-TrFE)] is lower than that of their ceramic counterparts, various approaches have been employed to improve the piezoelectric output of PVDF-based sensors, such as electrospinning, heat annealing, nanoconfinement, polymer blending, and nanoparticle addition. Here, we report two strategies to improve the piezoelectric sensing performance of polymer-based piezoelectric nanofibers, which include the formation of barium titanate (BTO)/P(VDF-TrFE) composite nanofibers and fabrication of penetrated electrodes to enlarge the interfacial area. BTO/P(VDF-TrFE) nanofibers with a BTO weight fraction of 5 wt % exhibit the maximum β-phase crystallinity and piezoelectricity. The piezoelectric output of the BTO/P(VDF-TrFE) nanofiber mat is significantly improved compared with that of pristine P(VDF-TrFE), which is confirmed by piezoresponse force microscopy (PFM) and compression loading tests. In order to form the penetrated electrodes, oxygen (O2) plasma treatment is employed, followed by an electroless plating process. The BTO/P(VDF-TrFE) nanofibers with penetrated electrodes demonstrate increased dielectric constants and enhanced piezoelectric outputs. A BTO/P(VDF-TrFE) nanofiber-based sensor with penetrated electrodes is capable of discerning the energy of a free-falling ball as low as 0.6 μJ and sensing the movement of a walking ant.

Journal ArticleDOI
TL;DR: In this article, a computational approach based on a generalized C 0 -type higher-order shear deformation theory (C0-HSDT) polygonal finite element formulation was developed for modeling both thick and thin plates.
Abstract: This paper investigates free vibration and dynamic responses of smart FG metal foam plate structures reinforced by graphene platelets (GPLs). We then analyze active control of FG metal foam plates with piezoelectric sensor and actuator layers. To provide numerical solution of underlying problems, we develop a computational approach based on a generalized C 0 -type higher-order shear deformation theory (C0-HSDT) polygonal finite element formulation (PFEM), which is suitable for modeling both thick and thin plates. To enhance accuracy of solution, we use in PFEM quadratic serendipity shape functions in combination with a generalized C 0 -HSDT. The FG core layers are constituted by combining between two porosity distributions and three GPL dispersion patterns distributed along the plate's thickness while two piezoelectric layers are perfectly bonded on the both bottom and top surfaces of host plate. The mechanical displacement field is approximated based on C 0 -HSDT while the electric potential distribution through the thickness for each piezoelectric layer is assumed to be a linear function. For active control, a constant velocity feedback scheme is employed through a closed loop control with piezoelectric sensors and actuators. The effect of the porosity coefficient, weight fraction of GPLs on the plate's behaviors with various porosity distributions and GPL dispersion patterns are evidently demonstrated through numerical examples.

Journal ArticleDOI
TL;DR: This research provides a new paradigm for designing highly piezoelectric and visible/near-infrared photoresponsive perovskite oxides for solar energy conversion, near-inf infrared detection, and other multifunctional applications.
Abstract: Defect-engineered perovskite oxides that exhibit ferroelectric and photovoltaic properties are promising multifunctional materials. Though introducing gap states by transition metal doping on the perovskite B-site can obtain low bandgap (i.e., 1.1-3.8 eV), the electrically leaky perovskite oxides generally lose piezoelectricity mainly due to oxygen vacancies. Therefore, the development of highly piezoelectric ferroelectric semiconductor remains challenging. Here, inspired by point-defect-mediated large piezoelectricity in ferroelectrics especially at the morphotropic phase boundary (MPB) region, an efficient strategy is proposed by judiciously introducing the gap states at the MPB where defect-induced local polar heterogeneities are thermodynamically coupled with the host polarization to simultaneously achieve high piezoelectricity and low bandgap. A concrete example, Ni2+ -mediated (1-x)Na0.5 Bi0.5 TiO3 -xBa(Ti0.5 Ni0.5 )O3-δ (x = 0.02-0.08) composition is presented, which can show excellent piezoelectricity and unprecedented visible/near-infrared light absorption with a lowest ever bandgap ≈0.9 eV at room temperature. In particular, the MPB composition x = 0.05 shows the best ferroelectricity/piezoelectricity (d33 = 151 pC N-1 , Pr = 31.2 μC cm-2 ) and a largely enhanced photocurrent density approximately two orders of magnitude higher compared with classic ferroelectric (Pb,La)(Zr,Ti)O3 . This research provides a new paradigm for designing highly piezoelectric and visible/near-infrared photoresponsive perovskite oxides for solar energy conversion, near-infrared detection, and other multifunctional applications.

Journal ArticleDOI
TL;DR: In this article, a piezoelectric nanogenerator (PNG) was used to harvest biomechanical energy from pulsing mechanical energy by fixing it to fingers on the human palm.
Abstract: Here we demonstrate the mechanical energy harvesting performance of a poly(vinylidene-fluoride) (PVDF) device which is loaded with reduced graphene oxide–silver nanoparticles (rGO–Ag). The current results show that the addition of rGO–Ag enhances the polar beta and gamma piezoelectric phases in PVDF, which is capable of generating a greater piezoelectric output, thereby eliminating the requirement of any external poling process. X-ray diffraction (XRD) and Fourier transform infra-red spectroscopy (FT-IR) characterizations were employed for the identification and quantification of the piezoelectric polar phases of the nanocomposite films. Raman spectroscopy confirmed the interactions between rGO–Ag and PVDF. Polarization vs. electric field (P–E) loop testing was performed and it was found that on the application of an external electric field of 148 kV cm−1 the nanocomposite showed an energy density value of ∼0.26 J cm−1, which indicates its potential for energy storage applications. The fabricated energy harvesting device, a piezoelectric nanogenerator (PNG), could charge up capacitors and light up to 20 commercial blue light-emitting diodes. The PNG was tested to harvest biomechanical energy from pulsing mechanical energy by fixing it to fingers on the human palm. The PNG was also fixed to flip-flops in order to demonstrate its footwear connected energy harvesting application. The PNG showed a peak output open circuit voltage of ∼18 V and a short circuit current of ∼1.05 μA, with a peak power density of 28 W m−3 across a 1 MΩ resistor. The PNG shows a moderate efficiency of 0.65%.

Journal ArticleDOI
TL;DR: In this article, the first-principles calculations of the Janus SnSSe monolayer were performed by means of generalized gradient approximation (GGA) plus spin-orbit coupling (SOC), and the results revealed that the JanSSe structure can be fabricated with unique electronic, optical, piezoelectric and transport properties.
Abstract: The Janus structure, by combining properties of different transition metal dichalcogenide (TMD) monolayers in a single polar material, has attracted increasing research interest because of their particular structure and potential application in electronics, optoelectronics and piezoelectronics. In this work, Janus SnSSe monolayer is predicted by means of first-principles calculations, which exhibits dynamic and mechanical stability. By using generalized gradient approximation (GGA) plus spin-orbit coupling (SOC), the Janus SnSSe monolayer is found to be an indirect band-gap semiconductor, whose gap can easily be tuned by strain. High carrier mobilities are obtained for SnSSe monolayer, and the hole mobility is higher than the electron mobility. For SnSSe monolayer, a uniaxial strain in the basal plane can induce both strong in-plane and much weaker out-of-plane piezoelectric polarizations, which reveals the potential as a piezoelectric two-dimensional (2D) material. The high absorption coefficients in the visible light region are observed, suggesting a potential photocatalytic application. Calculated results show that SnSSe monolayer has very high power factor, making it a promising candidate for thermoelectric applications. Our works reveal that the Janus SnSSe structure can be fabricated with unique electronic, optical, piezoelectric and transport properties, and can motivate related experimental works.