scispace - formally typeset
Search or ask a question
Topic

Pinealocyte

About: Pinealocyte is a research topic. Over the lifetime, 1605 publications have been published within this topic receiving 55609 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The efficacy, safety and side effects of melatonin supplementation in treating oxidative stress- and/or inflammation-related disorders, such as obesity, cardiovascular diseases, immune disorders, infectious diseases, cancer, neurodegenerative diseases, as well as osteoporosis and infertility are reviewed.
Abstract: Melatonin, an indoleamine hormone produced and secreted at night by pinealocytes and extra-pineal cells, plays an important role in timing circadian rhythms (24-h internal clock) and regulating the sleep/wake cycle in humans. However, in recent years melatonin has gained much attention mainly because of its demonstrated powerful lipophilic antioxidant and free radical scavenging action. Melatonin has been proven to be twice as active as vitamin E, believed to be the most effective lipophilic antioxidant. Melatonin-induced signal transduction through melatonin receptors promotes the expression of antioxidant enzymes as well as inflammation-related genes. Melatonin also exerts an immunomodulatory action through the stimulation of high-affinity receptors expressed in immunocompetent cells. Here, we reviewed the efficacy, safety and side effects of melatonin supplementation in treating oxidative stress- and/or inflammation-related disorders, such as obesity, cardiovascular diseases, immune disorders, infectious diseases, cancer, neurodegenerative diseases, as well as osteoporosis and infertility.

72 citations

Journal ArticleDOI
TL;DR: This review surveys recent developments in the melatonin field, and summarizes current knowledge on theMelatoninergic mechanisms, including the therapeutic aspect related to the hormone, which is related to both chronobiology and modulation of the body hormonal milieu.
Abstract: Melatonin is a hormone produced mainly by the pineal gland in most vertebrate species, including humans. Recent metabolic, receptor and functional studies created a picture of the melatoninergic system(s) in living organisms, its organization, physiology and a role in some pathologic conditions. The melatonin-generating system is characterized by three basic features: (1) photosensitivity, (2) diurnal (or circadian) rhythmicity (with highest levels of melatonin production occurring at night in darkness), and (3) age-related decline in its activity. Cyclic nocturnal increases of melatonin levels are proportional to the length of nights (or dark periods of an imposed light-dark cycle); the hormone thus conveys a photoperiodic message, and functions in an organism as an internal biochemical clock and calendar. Biological actions of melatonin are mediated via specific melatonin receptors, whose distribution in the body is uneven, yet with decisively highest density in the suprachiasmatic nuclei of the hypothalamus, pars tuberalis of the pituitary, and the retina (particularly in birds and lower vertebrates). Such a distribution of melatonin receptors suggests that the principal physiological role of the hormone is related to both chronobiology and modulation of the body hormonal milieu. This review surveys recent developments in the melatonin field, and summarizes current knowledge on the melatoninergic mechanisms, including the therapeutic aspect related to the hormone.

72 citations

Journal Article
TL;DR: The consequences of the altered melatonin cycle with the chronodisruption as well as the alterations of GIT melatonin that have been linked to a variety of pathologies, including those of the gastrointestinal tract.
Abstract: The current scientific literature is replete with investigations providing information on the molecular mechanisms governing the regulation of circadian rhythms by neurons in the suprachiasmatic nucleus (SCN), the master circadian generator. Virtually every function in an organism changes in a highly regular manner during every 24-hour period. These rhythms are believed to be a consequence of the SCN, via neural and humoral means, regulating the intrinsic clocks that perhaps all cells in organisms possess. These rhythms optimize the functions of cells and thereby prevent or lower the incidence of pathologies. Since these cyclic events are essential for improved cellular physiology, it is imperative that the SCN provide the peripheral cellular oscillators with the appropriate time cues. Inasmuch as the 24-hour light:dark cycle is a primary input to the central circadian clock, it is obvious that disturbances in the photoperiodic environment, e.g., light exposure at night, would cause disruption in the function of the SCN which would then pass this inappropriate information to cells in the periphery. One circadian rhythm that transfers time of day information to the organism is the melatonin cycle which is always at low levels in the blood during the day and at high levels during darkness. With light exposure at night the amount of melatonin produced is compromised and this important rhythm is disturbed. Another important source of melatonin is the gastrointestinal tract (GIT) that also influences the circulating melatonin is the generation of this hormone by the entero-endocrine (EE) cells in the gut following ingestion of tryptophan-containing meal. The consequences of the altered melatonin cycle with the chronodisruption as well as the alterations of GIT melatonin that have been linked to a variety of pathologies, including those of the gastrointestinal tract.

72 citations

Journal ArticleDOI
TL;DR: D-Asp was found to be distributed in the cytosol of pinealocytes, but its biological role remains unclear, suggesting that biosynthesis of D- aspartic acid in the pineal gland occurs at night.
Abstract: We found a high concentration (1030 pmol per pineal gland) of D-aspartic acid (D-Asp) in the pineal gland of 6-week-old Sprague-Dawley (SD) rats. The content of D-Asp decreased with age, being 210 and 33 pmol per pineal gland in 28- and 45-week-old rats respectively. The proportion of D-Asp [(D-Asp/total Asp) x 100] also decreased with age, declining from 66% to 10% between 6 and 45 weeks after birth. The proportion of D-Asp did not differ between the sexes. The concentration of D-Asp was higher at night (at 2.00 a.m. 2830 +/- 485 pmol per pineal gland) than during the day (at 10.00 a.m. 1030 +/- 200 and at 3:00 p.m. 682 +/- 194 pmol per pineal gland), suggesting that biosynthesis of D-Asp in the pineal gland occurs at night. D-Asp was found to be distributed in the cytosol of pinealocytes, but its biological role remains unclear.

71 citations

Journal ArticleDOI
TL;DR: There is a physiological day/night rhythm in pineal AANAT2 protein in the pike, and that light exposure at midnight decreases the abundance of AANat2 protein and activity, and this decrease is blocked by inhibitors of the proteasomal degradation pathway.
Abstract: In fish, individual photoreceptor cells in the pineal organ and retina contain complete melatonin rhythm generating systems. In the pike and seabream, this includes a photodetector, circadian clock, and melatonin synthesis machinery; the trout lacks a functional clock. The melatonin rhythm is due in part to a nocturnal increase in the activity of the arylalkylamine N-acetyltransferase (AANAT) which is inhibited by light. Two AANATs have been identified in fish: AANAT1, more closely related to AANATs found in higher vertebrates, is specifically expressed in the retina; AANAT2 is specifically expressed in the pineal organ. We show that there is a physiological day/night rhythm in pineal AANAT2 protein in the pike, and that light exposure at midnight decreases the abundance of AANAT2 protein and activity. In culture, this decrease is blocked by inhibitors of the proteasomal degradation pathway. If glands are maintained under light at night, treatment with these inhibitors increases AANAT2 activity and protein. Organ culture studies with the trout and seabream also indicate that the light-induced decrease of AANAT2 activity is prevented when proteasomal proteolysis is blocked. A cAMP-dependent pathway protects AANAT2 protein from degradation. These results provide a clue to understanding how light regulates the daily rhythm in melatonin secretion in fish photoreceptor cells and provides evidence that proteasomal proteolysis is a conserved element in the regulation of AANAT in vertebrates.

71 citations


Network Information
Related Topics (5)
Dopamine
45.7K papers, 2.2M citations
77% related
Dopaminergic
29K papers, 1.4M citations
77% related
Glutamate receptor
33.5K papers, 1.8M citations
76% related
Cerebral cortex
21.1K papers, 1.2M citations
75% related
NMDA receptor
24.2K papers, 1.3M citations
75% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202310
202219
202116
202011
201915
201817