scispace - formally typeset
Search or ask a question
Topic

Pinealocyte

About: Pinealocyte is a research topic. Over the lifetime, 1605 publications have been published within this topic receiving 55609 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The immunocytochemical localization for hydroxyindole O-methyltransferase, neuron-specific enolase and S-100 protein in the bovine pineal gland is described in this paper.

49 citations

Journal ArticleDOI
TL;DR: It is likely that cyclic AMP‐induced changes in AA‐NAT protein levels mediate rapid changes in chick pineal AA‐ NAT activity, and results indicate that light can rapidly regulate the abundance of a specific protein (AA‐NAT) within a photoreceptive cell.
Abstract: Melatonin production in the pineal gland is high at night and low during the day. This rhythm reflects circadian changes in the activity of serotonin N-acetyltransferase [arylalkylamine N-acetyltransferase (AA-NAT); EC 2.3.1.87], the penultimate enzyme in melatonin synthesis. The rhythm is generated by an endogenous circadian clock. In the chick, a clock is located in the pinealocyte, which also contains two phototransduction systems. One controls melatonin production by adjusting the clock and the other acts distal to the clock, via cyclic AMP mechanisms, to switch melatonin synthesis on and off. Unlike the clock in these cells, cyclic AMP does not appear to regulate activity by altering AA-NAT mRNA levels. The major changes in AA-NAT mRNA levels induced by the clock seemed likely (but not certain) to generate comparable changes in AA-NAT protein levels and AA-NAT activity. Cyclic AMP might also regulate AA-NAT activity via changes in protein levels, or it might act via other mechanisms, including posttranslational changes affecting activity. We measured AA-NAT protein levels and enzyme activity in cultured chick pineal cells and found that they correlated well under all conditions. They rose and fell spontaneously with a circadian rhythm. They also rose in response to agents that increase cyclic AMP. They were raised by agents that increase cyclic AMP, such as forskolin, and lowered by agents that decrease cyclic AMP, such as light and norepinephrine. Thus, both the clock and cyclic AMP can control AA-NAT activity by altering the total amount of AA-NAT protein. Effects of proteosomal proteolysis inhibitors suggest that changes in AA-NAT protein levels, in turn, reflect changes in the rate at which the protein is destroyed by proteosomal proteolysis. It is likely that cyclic AMP-induced changes in AA-NAT protein levels mediate rapid changes in chick pineal AA-NAT activity. Our results indicate that light can rapidly regulate the abundance of a specific protein (AA-NAT) within a photoreceptive cell.

48 citations

Journal ArticleDOI
TL;DR: In this paper, the pineal gland of the Mongolian gerbil following superior cervical ganglionectomy (SCGX) was studied and the effects of sympathetic denervation on the morphology of the gland at two time periods, 0500 and 1900 h (one hour before lights-on and lights-off, respectively).
Abstract: Morphometric analytical procedures were employed to study the pineal gland of the Mongolian gerbil following superior cervical ganglionectomy (SCGX). The purpose of this study was to define the effects of sympathetic denervation on the morphology of the gland at two time periods, 0500 and 1900 h (one hour before lights-on and lights-off, respectively). Fluorescence histochemistry was employed to determine catecholamine and indoleamine content in intact and denervated pineal glands. After SCGX, the pinealocytes decrease in size, concretions are prevented from forming, and the yellow fluorescence in the gland is lost. Following denervation a depression in the volume of most of the pinealocyte organelles, i.e., SER, RER/ribosomes, free cytoplasm, mitochondria and presumptive secretory vesicles, was also observed. However, synaptic ribbons increased in volume in the gerbils that had been killed at 1900 h. It appears that the sympathetic innervation to the pineal gland is a requirement for the presumptive secretory activity of the pinealocytes.

48 citations

Journal ArticleDOI
TL;DR: The immunocytochemical findings suggest that the quail pineal contains at least two classes of photoreceptor, some ‘rod- like’, others ‘non rod-like’.
Abstract: Immunocytochemistry with a rod-specific antiserum was used to study the post-hatch development (2 days–300 days) of photoreceptor elements within the pineal of the Japanese quail. At all ages staining was restricted to limited numbers of pinealocytes scattered throughout the gland. An enzyme-linked immunosorbent assay (ELISA), with the same rod-specific antibody, was then used to obtain a quantitative measure of rod opsin in total eye and pineal extracts in both the developing retina and pineal. The opsin content of both tissues shows a marked increase during the first 30 days after hatch and then plateaued to 0.84±0.02 nmoles opsin in the eye and 2.20±0.11 pmoles opsin equivalents in the pineal. The increase in opsin in the retina may be associated with continued post-hatch development of the photoreceptors. We then attempted to demonstrate the presence of the rhodopsin chromophore within pineal and retinal extracts using HPLC analysis. In both retinal and pineal extracts, 11-cis retinaldehyde was identified and a light-induced shift from the 11-cis to the all-trans isomer was clearly shown. This analysis also allowed us to calculate the total content of 11-cis and all-trans retinaldehyde (derived from both rod and non-rod photoreceptors) of the eye and pineal (eye: 1.7±0.2 nmoles; pineal: 4.6±0.5 pmoles). In the quail eye, the total amount of retinaldehyde is more than twice the amount of rod-like opsin. This probably reflects the large contribution of cones in the quail retina; the cone pigments will contribute to the retinaldehyde content but are not recognized by the rodspecific antibodies. In the pineal, we also found more than double the concentration of retinaldehyde than we would have predicted from the amount of rod-like opsin. These results, coupled with our immunocytochemical findings, suggest that the quail pineal contains at least two classes of photoreceptor, some ‘rod-like’, others ‘non rod-like’.

48 citations

Journal ArticleDOI
TL;DR: A model is proposed whereby phosducin, a phosphoprotein that binds the beta, gamma subunit of G-proteins, could modulate the synthesis of cyclic AMP by buffering the amount of beta, Gamma G-protein subunits that are available for activating adenylate cyclase.
Abstract: Light absorbed by retinal photoreceptors triggers a cascade of reactions that initiate cGMP hydrolysis, cation channel closure and membrane hyperpolarization. Down-regulation of the cascade involves additional proteins that interfere with amplification along the cascade. Pinealocytes are activated by norepinephrine during the dark phase of the day/night cycle. Mature pinealocytes of the mammalian pineal express the known photoreceptor proteins that are implicated in down-regulation of the visual cascade, but the cascade components that produce cGMP hydrolysis and membrane hyperpolarization are absent. Pinealocytes accumulate cyclic AMP minimally when norepinephrine activates their beta adrenergic receptors alone, but the response is potentiated by the simultaneous activation of their alpha-1 adrenergic receptors. A model is proposed whereby phosducin, a phosphoprotein that binds the beta,gamma subunit of G-proteins, could modulate the synthesis of cyclic AMP by buffering the amount of beta,gamma G-protein subunits that are available for activating adenylate cyclase.

48 citations


Network Information
Related Topics (5)
Dopamine
45.7K papers, 2.2M citations
77% related
Dopaminergic
29K papers, 1.4M citations
77% related
Glutamate receptor
33.5K papers, 1.8M citations
76% related
Cerebral cortex
21.1K papers, 1.2M citations
75% related
NMDA receptor
24.2K papers, 1.3M citations
75% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202310
202219
202116
202011
201915
201817