Topic

# Pipe flow

About: Pipe flow is a(n) research topic. Over the lifetime, 13826 publication(s) have been published within this topic receiving 351605 citation(s).

##### Papers published on a yearly basis

##### Papers

More filters

•

[...]

01 Jan 1955

TL;DR: The flow laws of the actual flows at high Reynolds numbers differ considerably from those of the laminar flows treated in the preceding part, denoted as turbulence as discussed by the authors, and the actual flow is very different from that of the Poiseuille flow.

Abstract: The flow laws of the actual flows at high Reynolds numbers differ considerably from those of the laminar flows treated in the preceding part. These actual flows show a special characteristic, denoted as turbulence. The character of a turbulent flow is most easily understood the case of the pipe flow. Consider the flow through a straight pipe of circular cross section and with a smooth wall. For laminar flow each fluid particle moves with uniform velocity along a rectilinear path. Because of viscosity, the velocity of the particles near the wall is smaller than that of the particles at the center. i% order to maintain the motion, a pressure decrease is required which, for laminar flow, is proportional to the first power of the mean flow velocity. Actually, however, one ob~erves that, for larger Reynolds numbers, the pressure drop increases almost with the square of the velocity and is very much larger then that given by the Hagen Poiseuille law. One may conclude that the actual flow is very different from that of the Poiseuille flow.

17,189 citations

[...]

01 Jan 1976

3,457 citations

••

[...]

TL;DR: In this article, the authors discuss heat transfer and skin friction in turbulent pipe flow with variable physical properties and highlight analytical methods to describe heat transfer mechanisms for constant liquid properties quite satisfactorily and to take into account the influence of the variation of physical properties with temperature versus heat transfer.

Abstract: Publisher Summary This chapter discusses heat transfer and skin friction in turbulent pipe flow with variable physical properties. The constant properties solution has been considered only so far as is necessary for the flow and heat transfer analysis with variable physical properties. The chapter highlights analytical methods to describe heat transfer mechanisms for constant liquid properties quite satisfactorily and to take into account the influence of the variation of physical properties with temperature versus heat transfer and skin friction in a number of important cases. Disagreement between theoretical and experimental results observed in other cases, in particular, with a considerable change in physical properties over the flow cross section, may be attributed to imperfect methods of estimating the effect of the variation of physical properties on turbulent diffusivity. Important experimental material has been accumulated on heat transfer and skin friction for variable physical properties. However, certain portions of this material possess relatively low accuracy that prevents its successful use. For a number of important cases, there has been no systematic data collection or that which is available is scanty and contradictory. Therefore, the need for further experimental investigations, with a high degree of accuracy, into the fluid mechanics and heat transfer for variable physical properties is quite urgent.

1,257 citations

••

[...]

TL;DR: A three-dimensional serpentine microchannel design with a "C shaped" repeating unit is presented in this paper as a means of implementing chaotic advection to passively enhance fluid mixing.

Abstract: A three-dimensional serpentine microchannel design with a "C shaped" repeating unit is presented in this paper as a means of implementing chaotic advection to passively enhance fluid mixing. The device is fabricated in a silicon wafer using a double-sided KOH wet-etching technique to realize a three-dimensional channel geometry. Experiments using phenolphthalein and sodium hydroxide solutions demonstrate the ability of flow in this channel to mix faster and more uniformly than either pure molecular diffusion or flow in a "square-wave" channel for Reynolds numbers from 6 to 70. The mixing capability of the channel increases with increasing Reynolds number. At least 98% of the maximum intensity of reacted phenolphthalein is observed in the channel after five mixing segments for Reynolds numbers greater than 25. At a Reynolds number of 70, the serpentine channel produces 16 times more reacted phenolphthalein than a straight channel and 1.6 times more than the square-wave channel. Mixing rates in the serpentine channel at the higher Reynolds numbers are consistent with the occurrence of chaotic advection. Visualization of the interface formed in the channel between streams of water and ethyl alcohol indicates that the mixing is due to both diffusion and fluid stirring.

1,166 citations

•

[...]

01 Jan 1975

TL;DR: In this article, the authors present an approach for the analysis of flow properties and properties in a 3D manifold with respect to velocity, acceleration, and velocity distribution, and the Bernoulli Equation.

Abstract: PREFACE. CHAPTER 1 Introduction. 1.1 Liquids and Gases. 1.2 The Continuum Assumption. 1.3 Dimensions, Units, and Resources. 1.4 Topics in Dimensional Analysis. 1.5 Engineering Analysis. 1.6 Applications and Connections. CHAPTER 2 Fluid Properties. 2.1 Properties Involving Mass and Weight. 2.2 Ideal Gas Law. 2.3 Properties Involving Thermal Energy. 2.4 Viscosity. 2.5 Bulk Modulus of Elasticity. 2.6 Surface Tension. 2.7 Vapor Pressure. 2.8 Summary. CHAPTER 3 Fluid Statics. 3.1 Pressure. 3.2 Pressure Variation with Elevation. 3.3 Pressure Measurements. 3.4 Forces on Plane Surfaces (Panels). 3.5 Forces on Curved Surfaces. 3.6 Buoyancy. 3.7 Stability of Immersed and Floating Bodies. 3.8 Summary. CHAPTER 4 Flowing Fluids and Pressure Variation. 4.1 Descriptions of Fluid Motion. 4.2 Acceleration. 4.3 Euler's Equation. 4.4 Pressure Distribution in Rotating Flows. 4.5 The Bernoulli Equation Along a Streamline. 4.6 Rotation and Vorticity. 4.7 The Bernoulli Equation in Irrotational Flow. 4.8 Separation. 4.9 Summary. CHAPTER 5 Control Volume Approach and Continuity Equation. 5.1 Rate of Flow. 5.2 Control Volume Approach. 5.3 Continuity Equation. 5.4 Cavitation. 5.5 Differential Form of the Continuity Equation. 5.6 Summary. CHAPTER 6 Momentum Equation. 6.1 Momentum Equation: Derivation. 6.2 Momentum Equation: Interpretation. 6.3 Common Applications. 6.4 Additional Applications. 6.5 Moment-of-Momentum Equation. 6.6 Navier-Stokes Equation. 6.7 Summary. CHAPTER 7 The Energy Equation. 7.1 Energy, Work, and Power. 7.2 Energy Equation: General Form. 7.3 Energy Equation: Pipe Flow. 7.4 Power Equation. 7.5 Contrasting the Bernoulli Equation and the Energy Equation. 7.6 Transitions. 7.7 Hydraulic and Energy Grade Lines. 7.8 Summary. CHAPTER 8 Dimensional Analysis and Similitude. 8.1 Need for Dimensional Analysis. 8.2 Buckingham Theorem. 8.3 Dimensional Analysis. 8.4 Common-Groups. 8.5 Similitude. 8.6 Model Studies for Flows Without Free-Surface Effects. 8.7 Model-Prototype Performance. 8.8 Approximate Similitude at High Reynolds Numbers. 8.9 Free-Surface Model Studies. 8.10 Summary. CHAPTER 9 Surface Resistance. 9.1 Surface Resistance with Uniform Laminar Flow. 9.2 Qualitative Description of the Boundary Layer. 9.3 Laminar Boundary Layer. 9.4 Boundary Layer Transition. 9.5 Turbulent Boundary Layer. 9.6 Pressure Gradient Effects on Boundary Layers. 9.7 Summary. CHAPTER 10 Flow in Conduits. 10.1 Classifying Flow. 10.2 Specifying Pipe Sizes. 10.3 Pipe Head Loss. 10.4 Stress Distributions in Pipe Flow. 10.5 Laminar Flow in a Round Tube. 10.6 Turbulent Flow and the Moody Diagram. 10.7 Solving Turbulent Flow Problems. 10.8 Combined Head Loss 10.9 Nonround Conduits. 10.10 Pumps and Systems of Pipes. 10.11 Summary. CHAPTER 11 Drag and Lift. 11.1 Relating Lift and Drag to Stress Distributions. 11.2 Calculating Drag Force. 11.3 Drag of Axisymmetric and 3D Bodies. 11.4 Terminal Velocity. 11.5 Vortex Shedding. 11.6 Reducing Drag by Streamlining. 11.7 Drag in Compressible Flow. 11.8 Theory of Lift. 11.9 Lift and Drag on Airfoils. 11.10 Lift and Drag on Road Vehicles. 11.11 Summary. CHAPTER 12 Compressible Flow. 12.1 Wave Propagation in Compressible Fluids. 12.2 Mach Number Relationships. 12.3 Normal Shock Waves. 12.4 Isentropic Compressible Flow Through a Duct with Varying Area. 12.5 Summary. CHAPTER 13 Flow Measurements. 13.1 Measuring Velocity and Pressure 13.2 Measuring Flow Rate (Discharge). 13.3 Measurement in Compressible Flow. 13.4 Accuracy of Measurements. 13.5 Summary. CHAPTER 14 Turbomachinery. 14.1 Propellers. 14.2 Axial-Flow Pumps. 14.3 Radial-Flow Machines. 14.4 Specific Speed. 14.5 Suction Limitations of Pumps. 14.6 Viscous Effects. 14.7 Centrifugal Compressors. 14.8 Turbines. 14.9 Summary. CHAPTER 15 Flow in Open Channels. 15.1 Description of Open-Channel Flow. 15.2 Energy Equation for Steady Open-Channel Flow. 15.3 Steady Uniform Flow. 15.4 Steady Nonuniform Flow. 15.5 Rapidly Varied Flow. 15.6 Hydraulic Jump. 15.7 Gradually Varied Flow. 15.8 Summary. Appendix A-1. Answers A-11. Index I-1.

1,164 citations