scispace - formally typeset
Search or ask a question
Topic

Pipe flow

About: Pipe flow is a research topic. Over the lifetime, 13826 publications have been published within this topic receiving 351605 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, experiments on fully developed turbulent flow in a channel which is rotating at a steady rate about a spanwise axis are described, and three stability related phenomena are observed or inferred: (1) the reduction (increase) of the rate of wall-layer streak bursting in locally stabilized (destabilized) wall layers; (2) the total suppression of transition to turbulence in a stabilized layer; (3) the development of large-scale roll cells on the destabilized side of the channel by growth of a Taylor-Gortler vortex instability.
Abstract: Experiments on fully developed turbulent flow in a channel which is rotating at a steady rate about a spanwise axis are described. The Coriolis force components in the region of two-dimensional mean flow affect both local and global stability. Three stability-related phenomena were observed or inferred: (1) the reduction (increase) of the rate of wall-layer streak bursting in locally stabilized (destabilized) wall layers; (2) the total suppression of transition to turbulence in a stabilized layer; (3) the development of large-scale roll cells on the destabilized side of the channel by growth of a Taylor-Gortler vortex instability. Local effects of rotational stabilization, such as reduction of the turbulent stress in wall layers, can be related to the local Richardson number in a simple way. This paper not only investigates this effect, but also, by methods of flow visualization, exposes some of the underlying structure changes caused by rotation.-

487 citations

Journal ArticleDOI
TL;DR: In this paper, a method to perform large-eddy simulations around complex boundaries on fixed Cartesian grids is presented, which is applicable to boundaries of arbitrary shape, does not involve special treatments, and allows the accurate imposition of the desired boundary conditions.

472 citations

Journal ArticleDOI
TL;DR: The main reasons for the fluid slip are that the molecular attraction between the liquid and the solid surface is reduced because the free surface energy of the solid is very low and the contact area of the liquid is decreased compared with a conventional smooth surface as discussed by the authors.
Abstract: Drag reduction phenomena, in which 14% drag reduction of tap water flowing in a 16 mm-diameter pipe occurs in the laminar flow range, have been clarified. Experiments were carried out to measure the pressure drop and the velocity profile of tap water and an aqueous solution of glycerin flowing in pipes with highly water-repellent walls, by using a pressure transducer and a hot-film anemometer, respectively. The same drag reduction phenomena also occurred in degassed tap water when using a vacuum tank. The velocity profile measured in this experiment gives the slip velocity at the pipe wall, and it was shown that the shear stress is directly proportional to the slip velocity.The friction factor formula for a pipe with fluid slip at the wall has been obtained analytically from the exact solution of the Navier–Stokes equation, and it agrees well qualitatively with the experimental data.The main reasons for the fluid slip are that the molecular attraction between the liquid and the solid surface is reduced because the free surface energy of the solid is very low and the contact area of the liquid is decreased compared with a conventional smooth surface because the solid surface has many fine grooves. Liquid cannot flow into the fine grooves owing to surface tension. These concepts are supported by the experimental result that drag reduction does not occur in the case of surfactant solutions.

468 citations

Journal ArticleDOI
TL;DR: In this article, an exact solution of pulsating laminar flow superposed on the steady motion in a circular pipe is presented under the assumption of parallel flow to the axis of pipe.
Abstract: An exact solution of pulsating laminar flow superposed on the steady motion in a circular pipe is presented under the assumption of parallel flow to the axis of pipe. Total mass of flow on time average is found to be identified with that given byHagen-Poiseuille's low calculated on the steady component of pressure gradient. The phase lag of velocity variation from that of pressure gradient increases from zero in the steady motion to 90° in the pulsation of infinite frequency. Integration of work for changing kinetic energy of fluid through one period is vanished, while that of dissipation of energy by internal friction remains finite and excess amount caused by the components of periodic motion is added to the components of steady flow. It is found that the given rate of mass flow is attained in pulsating motion by giving the same amount of average gradient of pressure as in steady flow, but that excess works to the steady case are necessary for maintenance of this motion.

463 citations

Journal ArticleDOI
TL;DR: A review of the modeling studies and experiments on steady and unsteady, two-and three-dimensional flows in arteries, and in arterial geometries most relevant in the context of atherosclerosis can be found in this article.
Abstract: ▪ Abstract The relationship between flow in the arteries, particularly the wall shear stresses, and the sites where atherosclerosis develops has motivated much of the research on arterial flow in recent decades. It is now well accepted that it is sites where shear stresses are low, or change rapidly in time or space, that are most vulnerable. These conditions are likely to prevail at places where the vessel is curved; bifurcates; has a junction, a side branch, or other sudden change in flow geometry; and when the flow is unsteady. These flows, often but not always involving flow separation or secondary motions, are also the most difficult ones in fluid mechanics to analyze or compute. In this article we review the modeling studies and experiments on steady and unsteady, two-and three-dimensional flows in arteries, and in arterial geometries most relevant in the context of atherosclerosis. These include studies of normal vessels—to identify, on the basis of the fluid mechanics, lesion foci—and stenotic ves...

460 citations


Network Information
Related Topics (5)
Reynolds number
68.4K papers, 1.6M citations
95% related
Laminar flow
56K papers, 1.2M citations
92% related
Fluid dynamics
47.9K papers, 1M citations
90% related
Turbulence
112.1K papers, 2.7M citations
89% related
Heat transfer
181.7K papers, 2.9M citations
89% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202335
202275
2021170
2020177
2019273
2018281