scispace - formally typeset
Search or ask a question
Topic

Pipe flow

About: Pipe flow is a research topic. Over the lifetime, 13826 publications have been published within this topic receiving 351605 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, an amplitude analysis of the Reynolds shear stress fluctuation u1 u2, sorted into four quadrants of the u1, u2 plane, was carried out in a turbulent pipe flow.
Abstract: The present investigation is oriented towards a better understanding of the turbulent structure in the core region of fully developed and completely wall-bounded flows. In view of the already existing results concerning the bursting process in boundary layers (which are semi-bounded flows), an amplitude analysis of the Reynolds shear stress fluctuation u1 u2, sorted into four quadrants of the u1, u2 plane, was carried out in a turbulent pipe flow. For the wall side of the core region, in which the correlation coefficient u1u2/u’1 u’2 does not change appreciably with the distance from the wall, the structure of the Reynolds stress is found to be similar to that obtained in boundary layers: bursts, i.e. ejections of low speed fluid, make the dominant contribution to the Reynolds stress; the regions of violent Reynolds stress are small fractions of the overall flow; and the mean time interval between bursts is found to be almost constant across the flow. For the core region, the large cross-stream evolution of the correlation coefficient u1 u2/u’1 u’2 is associated with a new structure of the Reynolds stress induced by the completely wall-bounded nature of the flow. Very large amplitudes of u1u2 are still observed, but two distinct burst-like patterns are now identified and related to ejections originating from the two opposite halves of the flow. In addition to this interaction, a focusing effect caused by the circular section of the pipe is observed. As a result of these two effects, the mean time interval between the bursts decreases significantly in the core region and reaches a minimum on the pipe axis. Investigation of specific space-time velocity correlations reveals the possible existence of rotating structures similar to those observed at the outer edge of turbulent boundary layers. These coherent motions are found to have a scale noticeably larger than that of the bursts.

92 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present the results of laboratory experiments that quantify the physical controls on the thickness of the falling film of liquid around a Taylor bubble, when liquid gas interfacial tension can be controlled.
Abstract: We present the results of laboratory experiments that quantify the physical controls on the thickness of the falling film of liquid around a Taylor bubble, when liquidgas interfacial tension can be...

92 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe correlation measurements in both broad and narrow frequency bands of the longitudinal velocity fluctuations in fully developed pipe flow at four positions for a reference probe whilst a second probe was traversed radially from deep in the sublayer to a position near the axis with both longitudinal and transverse separations zero (Δx = Δz = 0).
Abstract: The paper describes correlation measurements in both broad and narrow frequency bands of the longitudinal velocity fluctuations in fully developed pipe flow at four positions for a reference probe whilst a second probe was traversed radially from deep in the sublayer to a position near the axis with both longitudinal and transverse separations zero (Δx = Δz = 0). Such measurements require that both the Covariant (Co) and Quadrature (Quad) correlations be determined for each of the 15 frequencies used to constrain the wave component λx.The new data demonstrate that low frequency, large scale turbulence fluctuations extend over the majority of the radial region and that these components are highly correlated. By using a similarity variable kxy, along with a normalized wall distance y/y REF, both correlation functions, i.e. the Co and the Quad components, are shown to collapse. The physical significance of this is discussed.The broad-band data do not collapse because of the large range of wave sizes. However, the present experiment does show that strong radial correlations exist even when one probe is at y+ = 1. This conflicts with the earlier data of Favre, but agrees with the more recent work of Comte-Bellot. There is a significant amount of turbulent energy in frequencies less than 16 Hz (ω+ = 0·008) for turbulent flows of about 105 Reynolds number.The spectral function ωΦ(ω) is also presented for a range of y+ values. Using this form for the power spectral density, along with the stochastic wave modelling and similarity arguments of this paper, it is shown how a consistent explanation for the behaviour of these spectra is obtained. In addition some preliminary results from cross-spectral analyses are presented and suggestions made as to their physical significance.

92 citations

Journal ArticleDOI
TL;DR: In this paper, the authors made a numerical study of flow and heat transfer characteristics of a pulsating flow in a pipe, where complete time-dependent laminar boundary-layer equations are solved numerically over broad ranges of the parameter spaces, i.e., the frequency parameter β and the amplitude of oscillation A.

92 citations

Journal ArticleDOI
TL;DR: In this article, the stability and transition to turbulence of wall-bounded unsteady velocity profiles with reverse flow was studied. But the velocity profiles during the decay of the flow are unstable due to their inflectional nature.
Abstract: This paper deals with the stability and transition to turbulence of wall-bounded unsteady velocity profiles with reverse flow. Such flows occur, for example, during unsteady boundary layer separation and in oscillating pipe flow. The main focus is on results from experiments in time-developing flow in a long pipe, which is decelerated rapidly. The flow is generated by the controlled motion of a piston. We obtain analytical solutions for laminar flow in the pipe and in a two-dimensional channel for arbitrary piston motions. By changing the piston speed and the length of piston travel we cover a range of values of Reynolds number and boundary layer thickness. The velocity profiles during the decay of the flow are unsteady with reverse flow near the wall, and are highly unstable due to their inflectional nature. In the pipe, we observe from flow visualization that the flow becomes unstable with the formation of what appears to be a helical vortex. The wavelength of the instability [simeq R: similar, equals]3[delta] where [delta] is the average boundary layer thickness, the average being taken over the time the flow is unstable. The time of formation of the vortices scales with the average convective time scale and is [simeq R: similar, equals]39/([Delta]u/[delta]), where [Delta]u=(umax[minus sign]umin) and umax, umin and [delta] are the maximum velocity, minimum velocity and boundary layer thickness respectively at each instant of time. The time to transition to turbulence is [simeq R: similar, equals]33/([Delta]u/[delta]). Quasi-steady linear stability analysis of the velocity profiles brings out two important results. First that the stability characteristics of velocity profiles with reverse flow near the wall collapse when scaled with the above variables. Second that the wavenumber corresponding to maximum growth does not change much during the instability even though the velocity profile does change substantially. Using the results from the experiments and the stability analysis, we are able to explain many aspects of transition in oscillating pipe flow. We postulate that unsteady boundary layer separation at high Reynolds numbers is probably related to instability of the reverse flow region.

92 citations


Network Information
Related Topics (5)
Reynolds number
68.4K papers, 1.6M citations
95% related
Laminar flow
56K papers, 1.2M citations
92% related
Fluid dynamics
47.9K papers, 1M citations
90% related
Turbulence
112.1K papers, 2.7M citations
89% related
Heat transfer
181.7K papers, 2.9M citations
89% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202335
202275
2021170
2020177
2019273
2018281