scispace - formally typeset
Search or ask a question
Topic

Pipe flow

About: Pipe flow is a research topic. Over the lifetime, 13826 publications have been published within this topic receiving 351605 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a particle-laden, swirling flow through a pipe expansion was modeled using a finite-volume approach for solving the time-averaged Navier-Stokes equations.
Abstract: The present study concerns a particle-laden, swirling flow through a pipe expansion. A gas-particle flow enters the test section through a center tube, and a swirling air stream enters through a coaxial annulus. The swirl number based on the total inflow is 0.47. Numerical predictions of the gas flow were performed using a finite-volume approach for solving the time-averaged Navier-Stokes equations. The predicted mean velocity profiles showed good agreement with experimental results when using the standard k-e turbulence model. The turbulent kinetic energy of the gas phase, however, is considerably underpredicted by this turbulence model, especially in the initial mixing region of the two jets. The particle dispersion characteristics in this complex flow were studied by using the Lagrangian method for particle tracking and considering the particle size distribution. The influence of the particle phase onto the fluid flow was neglected in the present stage, since only low particle loadings were considered. The particle mean velocities were again predicted reasonably well and differences between experiment and simulation were only found in the velocity fluctuations, which is partly the result of the underpredicted turbulent kinetic energy of the gas phase. The most sensitive parameter for validating the quality of numerical simulations for particle dispersion is the development of the particle mean number diameter which showed reasonable agreement with the experiments, except for the core region of the central recirculation bubble. This, however, is attributed again to the predicted low turbulent kinetic energy of the gas phase.

79 citations

Journal ArticleDOI
TL;DR: In this article, the flow velocity distribution in fluid-conveying pipes caused by the viscosity of real fluids is modified for laminar and turbulent flow profiles, and the critical flow velocities for divergence in the above-mentioned three cases are found to be 13.4%, 0.74-1.9% and 1.7-2.6%, respectively, lower than that with plug flow, while those for flutter are even lower, which could reach 36%.

79 citations

Journal ArticleDOI
TL;DR: In this article, a finite difference procedure was used to solve the governing equations in dimensionless form using air as the fluid, and several correlations developed to enable important performance characteristics to be estimated given the channel thickness, height, and surface temperatures.

79 citations

01 Jan 1996
Abstract: A general wellbore flow model, which incorporates not only frictional, accelerational, and gravitational pressure drops, but also the pressure drop caused by inflow, is presented in this paper. The new wellbore model is readily applicable to different wellbore perforation patterns and well completions, and can be easily incorporated in reservoir simulators or analytical reservoir inflow models. Three dimensionless numbers, the accelerational to frictional pressure gradient ratio R af , the gravitational to frictional pressure gradient ratio R gf and the inflow-directional to accelerational pressure gradient ratio R da , have been introduced to quantitatively describe the relative importance of different pressure gradient components. For fluid flow in a production well, it is expected that there exist three different flow regions along the wellbore, the laminar flow region, the partially-developed turbulent flow region, and the fully-developed turbulent flow region. For wellbore flow with uniform influx, R af in the laminar flow region is a constant which is only dependent on fluid properties, inflow rate and pipe ID, but independent of axial location and pipe roughness; R af in the fully-developed turbulent flow region is related to the axial location and pipe geometry (pipe ID and pipe roughness) and may be independent of the fluid properties and inflow rate; whereas R af in the partially-developed turbulent flow region depends on location, pipe geometry, fluid properties and inflow rate. It is found that the influence of either inflow or outflow depends on the flow regime present in the wellbore. For laminar flow, wall friction increases due to inflow but decreases due to outflow. For turbulent flow, inflow reduces the wall friction, while outflow increases the wall friction. New wall friction factor correlations for wellbore flows have been developed, which can be applied to determine the wall friction shear and the frictional pressure drop for either inflow (production well) or outflow (injection well) and for either laminar or turbulent flow regime. Calculation results show that the accelerational pressure drop may or may not be important compared to the frictional component depending on the specific pipe geometry, fluid properties and flow conditions. It is recommended that the new wellbore flow model be included in wellbore-reservoir coupling models to achieve more accurate predictions of pressure drop and inflow distribution along the wellbore as well as the well production or injection rates.

79 citations

Journal ArticleDOI
TL;DR: In this paper, evolutionary gene expression programming (GEP) was used to develop new empirical formulas for the prediction of longitudinal dispersion coefficients in pipe flow using 220 experimental case studies of the dispersion coefficient with a R range of 2,000-500,000 spanning transitional and turbulent pipe flow.
Abstract: Longitudinal dispersion in pipelines leads to changes in the characteristics of contaminants. It is critical to quantify these changes because the contaminants travel through water networks or through chemical reactors. The essential characteristics of longitudinal dispersion in pipes can be described by the longitudinal dispersion coefficient. This paper presents the application of evolutionary gene expression programming (GEP) to develop new empirical formulas for the prediction of longitudinal dispersion coefficients in pipe flow using 220 experimental case studies of the dispersion coefficient with a R range of 2,000–500,000 spanning transitional and turbulent pipe flow. Gene expression programming is used to develop empirical relations between the longitudinal dispersion coefficient and various control variables, including the Reynolds number, the average velocity, the pipe friction coefficient, and the pipe diameter. Four GEP models are developed, and the weight and importance of each contro...

79 citations


Network Information
Related Topics (5)
Reynolds number
68.4K papers, 1.6M citations
95% related
Laminar flow
56K papers, 1.2M citations
92% related
Fluid dynamics
47.9K papers, 1M citations
90% related
Turbulence
112.1K papers, 2.7M citations
89% related
Heat transfer
181.7K papers, 2.9M citations
89% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202335
202275
2021170
2020177
2019273
2018281